
Teradata FastExport
Reference

Release 13.00.00
B035-2410-088A

April 2009

The product or products described in this book are licensed products of Teradata Corporation or its affiliates.

Teradata, BYNET, DBC/1012, DecisionCast, DecisionFlow, DecisionPoint, Eye logo design, InfoWise, Meta Warehouse, MyCommerce,
SeeChain, SeeCommerce, SeeRisk, Teradata Decision Experts, Teradata Source Experts, WebAnalyst, and You’ve Never Seen Your Business Like
This Before are trademarks or registered trademarks of Teradata Corporation or its affiliates.

Adaptec and SCSISelect are trademarks or registered trademarks of Adaptec, Inc.

AMD Opteron and Opteron are trademarks of Advanced Micro Devices, Inc.

BakBone and NetVault are trademarks or registered trademarks of BakBone Software, Inc.

EMC, PowerPath, SRDF, and Symmetrix are registered trademarks of EMC Corporation.

GoldenGate is a trademark of GoldenGate Software, Inc.

Hewlett-Packard and HP are registered trademarks of Hewlett-Packard Company.

Intel, Pentium, and XEON are registered trademarks of Intel Corporation.

IBM, CICS, RACF, Tivoli, and z/OS are registered trademarks of International Business Machines Corporation.

Linux is a registered trademark of Linus Torvalds.

LSI and Engenio are registered trademarks of LSI Corporation.

Microsoft, Active Directory, Windows, Windows NT, and Windows Server are registered trademarks of Microsoft Corporation in the United
States and other countries.

Novell and SUSE are registered trademarks of Novell, Inc., in the United States and other countries.

QLogic and SANbox are trademarks or registered trademarks of QLogic Corporation.

SAS and SAS/C are trademarks or registered trademarks of SAS Institute Inc.

SPARC is a registered trademark of SPARC International, Inc.

Sun Microsystems, Solaris, Sun, and Sun Java are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other
countries.

Symantec, NetBackup, and VERITAS are trademarks or registered trademarks of Symantec Corporation or its affiliates in the United States
and other countries.

Unicode is a collective membership mark and a service mark of Unicode, Inc.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other product and company names mentioned herein may be the trademarks of their respective owners.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS-IS” BASIS, WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION
MAY NOT APPLY TO YOU. IN NO EVENT WILL TERADATA CORPORATION BE LIABLE FOR ANY INDIRECT, DIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS OR LOST SAVINGS, EVEN IF EXPRESSLY ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

The information contained in this document may contain references or cross-references to features, functions, products, or services that are
not announced or available in your country. Such references do not imply that Teradata Corporation intends to announce such features,
functions, products, or services in your country. Please consult your local Teradata Corporation representative for those features, functions,
products, or services available in your country.

Information contained in this document may contain technical inaccuracies or typographical errors. Information may be changed or updated
without notice. Teradata Corporation may also make improvements or changes in the products or services described in this information at any
time without notice.

To maintain the quality of our products and services, we would like your comments on the accuracy, clarity, organization, and value of this
document. Please e-mail: teradata-books@lists.teradata.com

Any comments or materials (collectively referred to as “Feedback”) sent to Teradata Corporation will be deemed non-confidential. Teradata
Corporation will have no obligation of any kind with respect to Feedback and will be free to use, reproduce, disclose, exhibit, display, transform,
create derivative works of, and distribute the Feedback and derivative works thereof without limitation on a royalty-free basis. Further, Teradata
Corporation will be free to use any ideas, concepts, know-how, or techniques contained in such Feedback for any purpose whatsoever, including
developing, manufacturing, or marketing products or services incorporating Feedback.

Copyright © 1998-2009 by Teradata Corporation. All Rights Reserved.

mailto:teradata-books@lists.teradata.com

Preface

Purpose

This book provides information about Teradata FastExport (FastExport), which is a
Teradata® Tools and Utilities product. Teradata Tools and Utilities is a group of products
designed to work with Teradata Database.

Teradata FastExport is a command-driven utility that uses multiple sessions to quickly
transfer large amounts of data from tables and views of the Teradata Database to a client-
based application. This book describes the operational features and capabilities of the utility,
and includes the syntax for Teradata FastExport commands.

Audience

This book is intended for use by:

• System and application programmers

• System administrators

Supported Releases

This book supports the following releases:

• Teradata Database 13.00.00

• Teradata Tools and Utilities 13.00.00

• Teradata FastExport Reference Version 13.00.00

Note: See “Interactive Mode” on page 22 to verify the Teradata FastExport version
number.

To locate detailed supported-release information:

1 Go to http://www.info.teradata.com/.

2 Click General Search under Online Publications.

3 Type 3119 in the Publication Product ID box.

4 Under Sort By, select Date.

5 Click Search.

6 Open the version of the Teradata Tools and Utilities ##.# Supported Platforms and Product
Versions spreadsheet associated with this release.
Teradata FastExport Reference 3

http://www.info.teradata.com/

Preface
Prerequisites
The spreadsheet includes supported Teradata Database versions, platforms, and product
release numbers.

Prerequisites

The following prerequisite knowledge is required for this product:

• Familiarity with computer technology

• Knowledge of database management systems and utilities that load and retrieve data

• Teradata SQL

Changes to This Book

The following changes were made to this book in support of the current release. Changes are
marked with change bars. For a complete list of changes to the product, see the Release
Definition associated with this release.

Additional Information

Additional information that supports this product and Teradata Tools and Utilities is
available at the web sites listed in the table that follows. In the table, mmyx represents the
publication date of a manual, where mm is the month, y is the last digit of the year, and x is an
internal publication code. Match the mmy of a related publication to the date on the cover of
this book. This ensures that the publication selected supports the same release.

Date and Release Description

April 2009
13.00.00

Updated FastExport configuration file information.

August 2008
13.00.00

Changes included for Teradata Tools and Utilities 13.00.00:

• Standalone utilities cannot handle objects that include a semicolon in
the object name.

• Can use “xx1A” characters in Unicode data.

• Support for Period data type.

• SET and ACCEPT are valid commands preceding LOGON and
LOGTABLE.

• Updated IBM names to correct references.

• Removed APPLY-WHERE from IMPORT command syntax diagram.

• Added UDT/UDM information for FastExport as Appendix D.
4 Teradata FastExport Reference

Preface
Additional Information
Type of Information Description Access to Information

Release overview

Late information

Use the Release Definition for the following
information:

• Overview of all of the products in the
release

• Information received too late to be
included in the manuals

• Operating systems and Teradata
Database versions that are certified to
work with each product

• Version numbers of each product and
the documentation for each product

• Information about available training
and the support center

1 Go to http://www.info.teradata.com/.

2 Click General Search under Online Publications.

3 Type 2029 in the Publication Product ID box.

4 Click Search.

5 Select the appropriate Release Definition from
the search results.

Additional product
information

Use the Teradata Information Products
web site to view or download specific
manuals that supply related or additional
information to this manual.

1 Go to http://www.info.teradata.com/.

2 Click Data Warehousing under Online
Publications, Browse by Category.

3 Do one of the following:

• For a list of Teradata Tools and Utilities
documents, click Teradata Tools and Utilities,
and then select an item under Releases or
Products.

• Select a link to any of the data warehousing
publications categories listed.

Specific books related to Teradata FastExport are as
follows:

• Teradata Tools and Utilities Command Summary
B035-2401-mmyA

CD-ROM images Access a link to a downloadable CD-ROM
image of all customer documentation for
this release. Customers are authorized to
create CD-ROMs for their use from this
image.

1 Go to http://www.info.teradata.com/.

2 Click Data Warehousing under Online
Publications, Browse by Category.

3 Click CD-ROM List and Images.

Ordering
information for
manuals

Use the Teradata Information Products
web site to order printed versions of
manuals.

1 Go to http://www.info.teradata.com/.

2 Click How to Order under Print & CD
Publications.

3 Follow the ordering instructions.
Teradata FastExport Reference 5

http://www.info.teradata.com/
http://www.info.teradata.com/
http://www.info.teradata.com/
http://www.info.teradata.com/

Preface
Additional Information
General information
about Teradata

The Teradata home page provides links to
numerous sources of information about
Teradata. Links include:

• Executive reports, case studies of
customer experiences with Teradata,
and thought leadership

• Technical information, solutions, and
expert advice

• Press releases, mentions, and media
resources

1 Go to Teradata.com.

2 Select a link.

Type of Information Description Access to Information
6 Teradata FastExport Reference

http://www.teradata.com

Table of Contents

Preface. .3

Purpose .3

Audience .3

Supported Releases .3

Prerequisites .4

Changes to This Book. .4

Additional Information .4

Chapter 1:
Overview . 13

FastExport Utility . 13

Description . 13

What it Does . 13

How it Works . 14

Operating Features and Capabilities . 14

Operating Modes . 14

Character Sets . 14

Task Status Reporting . 14

FastExport Commands. 16

FastExport Support Activity Commands. 16

FastExport Task Activity Commands. 17

Teradata SQL Statements . 17

FastExport Example . 19

Chapter 2:
Using FastExport . 21

Invoking FastExport . 21

File Requirements . 21

Interactive Mode . 22

Batch Mode. 22

Run-time Parameters. 23
Teradata FastExport Reference 7

Table of Contents
z/OS Example .28

z/VM Example .29

UNIX and Windows Examples. .30

Terminating FastExport .31

Normal Termination .31

Abort Termination. .31

Restarting a Paused FastExport Job. .32

Paused FastExport Jobs .32

After a Job Script Error .33

After Hardware Failures or Software Error Conditions .33

After an AP Reset Condition. .33

Programming Considerations .34

FastExport Configuration File .34

Generated MultiLoad Script File .36

FastExport Command Conventions. .38

Variables .39

ANSI/SQL DateTime Specifications. .40

Comments .40

Character Set Specification .41

Graphic Data Types .46

Graphic Constants .46

Select Requests .46

Restrictions and Limitations .47

Termination Control Codes .48

UNIX Signals .48

Using INMOD, OUTMOD, and Notify Exit Routines .49

Overview .49

Programming Considerations for Using Routines .50

FastExport/INMOD Routine Interface .54

FastExport/OUTMOD Routine Interface .56

FastExport/Notify Exit Routine Interface .57

Writing a FastExport Job Script. .59

Definition .59

Using Checkpoints in a Single Export Job .61

Chapter 3:
FastExport Commands .63

Syntax Notes .63

Object Name Restrictions .63

Geospatial Data Restrictions .63
8 Teradata FastExport Reference

Table of Contents
ACCEPT. 64

BEGIN EXPORT . 67

DATEFORM . 74

DISPLAY . 75

END EXPORT. 77

EXPORT . 78

FIELD . 87

FILLER . 94

IF, ELSE, and ENDIF . 96

IMPORT . 98

LAYOUT . 104

LOGDATA. 107

LOGMECH . 108

LOGOFF . 109

LOGON . 111

LOGTABLE . 114

ROUTE MESSAGES . 116

RUN FILE . 118

SET . 120

SYSTEM . 122

Appendix A:
How to Read Syntax Diagrams . 123

Syntax Diagram Conventions . 123

Strings . 125

Multiple Legitimate Phrases . 127

Sample Syntax Diagram. 128

Diagram Identifier . 128

Appendix B:
Invocation Examples . 129

z/VM. 129

z/OS . 131

UNIX and Windows . 135
Teradata FastExport Reference 9

Table of Contents
Appendix C:
INMOD, OUTMOD and
Notify Exit Routine Examples. .139

z/VM. .140

z/OS .145

UNIX .156

Windows .166

Appendix D:
User-Defined-Types
and User-Defined-Methods .177

User-Defined-Types and User-Defined-Methods .177

User-Defined Types (UDTs). .177

User-Defined-Methods (UDMs) .178

Creating UDTs with FastExport .178

Inserting and Retrieving UDTs with Client Products. .178

External Types .178

Inserting UDTs with FastExport. .179

Retrieving UDTs with FastExport .179

Retrieving UDT Metadata with FastExport. .179

Glossary .181

Index .207
10 Teradata FastExport Reference

List of Tables

Table 1: FastExport Support Activity Commands . 16

Table 2: FastExport Task Activity Commands . 17

Table 3: Supported Teradata SQL Statements in FastExport . 18

Table 4: Data Sets, Files and Devices for Teradata FastExport . 21

Table 5: Run-time Parameter Descriptions (Channel-Attached Systems) 23

Table 6: Run-time Parameter Descriptions (Network-Attached Systems) 25

Table 7: System Variables . 39

Table 8: C Language Comments . 40

Table 9: Standard Character Sets Supported by FastExport . 41

Table 10: Site-Defined Character Sets . 42

Table 11: Methods for Specifying Character Sets. 44

Table 12: Commands Impacting Multibyte Character Sets . 45

Table 13: FastExport Programming Restrictions and Limitations . 47

Table 14: INMOD and OUTMOD Routines . 49

Table 15: Languages Supported by Platform and Type of User-Developed Routine 50

Table 16: Programming Structure for INMOD Routines . 51

Table 17: Entry Points for INMOD, OUTMOD, and Notify Exit Routines 52

Table 18: FastExport-to-INMOD Status Codes . 54

Table 19: INMOD-to-FastExport Interface Status Codes . 55

Table 20: FastExport-to-OUTMOD Interface Entry Codes . 56

Table 21: Events Passed to the Notify Exit Routine . 58

Table 22: Commands for Establishing FastExport Support Environment 60

Table 23: Commands for Specifying the FastExport Task . 60

Table 24: ACCEPT Command Usage Notes. 65

Table 25: Events That Create Notifications . 71

Table 26: BEGIN EXPORT Usage Notes . 72

Table 27: DATEFORM Command Usage Notes . 74

Table 28: DISPLAY Command Usage Notes . 75

Table 29: END EXPORT Command Usage Notes. 77

Table 30: EXPORT Command Usage Notes . 81

Table 31: Record Length and Block Size Specifications
(Channel-Attached Client Systems) . 83
Teradata FastExport Reference 11

List of Tables
Table 32: Data Type Descriptions (Channel-Attached Client Systems) 84

Table 33: FIELD Command Usage Notes. .88

Table 34: ANSI/SQL DateTime Specifications .89

Table 35: FILLER Command Usage Notes .95

Table 36: IF, ELSE and END IF Command Usage Notes .96

Table 37: IMPORT Command Usage Notes .102

Table 38: LAYOUT Command Usage Notes .105

Table 39: LOGOFF Command Usage Notes .109

Table 40: LOGON Command Usage Notes .112

Table 41: LOGTABLE Command Usage Notes .114

Table 42: ROUTE MESSAGES Command Usage Notes .117

Table 43: RUN FILE Command Usage Notes .119

Table 44: SET Command Usage Notes .120
12 Teradata FastExport Reference

CHAPTER 1

Overview

This chapter provides an introductory overview of the Teradata FastExport utility. Topics
include:

• FastExport Utility

• Operating Features and Capabilities

• FastExport Commands

• FastExport Example

FastExport Utility

This section provides a general description of FastExport, what it does, and how it works.

Description

FastExport is a command-driven utility that uses multiple sessions to quickly transfer large
amounts of data from tables and views of the Teradata Database to a client-based application.

Data can be exported from any table or view where the SELECT access privilege has been
granted. The destination for the exported data can be:

• A file on a channel-attached or network-attached client system

• An Output Modification (OUTMOD) routine written to select, validate, and preprocess
the exported data

Note: Full tape support is not available for any function in FastExport for network-
attached client systems. To export data to a tape, write a custom access module that
interfaces with the tape device. For information about how to write a custom access
module, see the Teradata Tools and Utilities Access Module Programmer Guide.

What it Does

When FastExport is invoked, the utility executes the FastExport commands and Teradata SQL
statements in the FastExport job script. These direct FastExport to:

1 Log on to the Teradata Database for a specified number of sessions, using username,
password, and tdpid/acctid information

2 Retrieve the specified data from the Teradata Database, in accordance with format and
selection specifications
Teradata FastExport Reference 13

Chapter 1: Overview
Operating Features and Capabilities
3 Export the data to the specified file or OUTMOD routine on a client system

4 Log off the Teradata Database

How it Works

FastExport processes a series of FastExport commands and Teradata SQL statements enter,
usually as a batch mode job script.

The FastExport commands provide the session control and data handling specifications for
the data transfer operations. The Teradata SQL statements perform the actual data export
functions on the Teradata Database tables and views.

Operating Features and Capabilities

This section describes the key operational capabilities for running the FastExport utility. For
specific information on supported operating systems, refer to Teradata Tools and Utilities
##,##,## Supported and Certified Versions, B035-3119-mmyK. This spreadsheet shows version
numbers and platform information for all Teradata Tools and Utilities products and is
available at http://www.info.teradata.com/

Operating Modes

FastExport runs in the following operating modes:

• Interactive

• Batch

Character Sets

FastExport supports the character sets shipped with Teradata; this includes Latin, Japanese,
Chinese, and Korean character sets, along with ASCII, EBCDIC, UTF-8, and UTF-16. For
additional information about character-set support and definition, see “Character Set
Specification” on page 41.

Task Status Reporting

FastExport utility has three ways to provide information about the status of jobs that are still
in progress and those that have just completed:

• Logon/connect messages

• Operational status messages

• Logoff/disconnect messages

Additionally, the Query Session utility (QrySessn) provides real-time, phase-oriented
progress reports at selected intervals during the FastExport job.

The FastExport utility writes messages to either:
14 Teradata FastExport Reference

http://www.info.teradata.com/

Chapter 1: Overview
Operating Features and Capabilities
• The customary output destination for a client system (SYSPRINT/stdout or the redirected
stdout)

or

• An alternate destination specified in a ROUTE MESSAGES command

The utility also writes operational status information in the restart log table so it can be
restored after a system restart operation.

The following sections describe reporting methods available for monitoring FastExport.

Logon/Connect Messages

In addition to input command directives (except for the logon password), FastExport lists the
options specifications for each task:

• SESSIONS limit

• TENACITY hours

• SLEEP minutes

Operational Status Messages

During the progress of a FastExport job, the utility displays a message each time a SELECT
statement:

• Executes

• Completes

The completion message also indicates the total number of data blocks generated by the
statement.

Also, at five-minute intervals, FastExport reports:

• The total number of records that have been exported to the output file

• The number of blocks processed for each executing minute, displayed as both a running
average and a five-minute average

Turn off status messages by setting:

• The run-time parameter -s to OFF

• The FastExport CONFIG FILE entry set to Status=OFF

For a detailed description, see “Run-time Parameters” on page 23 and “FastExport
Configuration File” on page 34.

Logoff/Disconnect Messages

Issued in response to the LOGOFF command, the FastExport logoff/disconnect message lists:

• The time that the LOGOFF command was executed

• Whether the disconnect operation was successful

• Whether the restart log table was dropped or kept, depending on the success or failure of
the job

• The total processor time used
Teradata FastExport Reference 15

Chapter 1: Overview
FastExport Commands
• The job start/end time and date

• The highest return code encountered by the job

Query Session Utility

QrySessn is a separate utility that monitors the progress of a FastExport job on the Teradata
Database. QrySessn reports status information for each phase of the FastExport job.

Execute the Query Session utility from either:

• A system console using the Database Window (DBW) interface on a Teradata Database
for UNIX system, or

• Teradata Manager

For complete information about using the Query Session utility, see the QrySessn chapter in
the Utilities reference documentation.

FastExport Commands

FastExport provides commands for support and task activities and supports a subset of
Teradata SQL statements.

FastExport Support Activity Commands

Support commands establish the FastExport sessions with the Teradata Database and define
the operational support environment for the FastExport utility. Established support
environment options remain in effect until another support command changes them.
Support commands do not specify a FastExport task.

Table 1 lists the FastExport commands that perform support activities.

Table 1: FastExport Support Activity Commands

FastExport Command Function

ACCEPT Allows the value of one or more utility variables to be accepted from either a file or an
environment variable

DATEFORM Specifies the form of the DATE data type specifications for the FastExport job

DISPLAY Writes messages to the specified destination

ELSE (see IF, ELSE, and
ENDIF)

Introduces commands and statements that execute when a preceding IF condition is false

ENDIF (see IF, ELSE, and
ENDIF)

Delimits the group of FastExport commands that were subject to previous IF or ELSE
conditions

IF (see IF, ELSE, and ENDIF) Introduces a conditional expression whose value initiates execution of subsequent
commands

LOGOFF Disconnects all active sessions and terminates FastExport
16 Teradata FastExport Reference

Chapter 1: Overview
FastExport Commands
FastExport Task Activity Commands

Task commands specify the actual processing that takes place for each FastExport task.

Table 2 lists the FastExport commands that perform task activities.

Teradata SQL Statements

Teradata SQL statements define and manipulate the data stored in the Teradata Database.

LOGON Specifies the LOGON string to be used in connecting all sessions established by FastExport

LOGTABLE Specifies a restart log table for the FastExport checkpoint information

ROUTE MESSAGES Identifies an alternate destination of FastExport output messages

RUN FILE Invokes the specified external file as the current source of utility commands and Teradata
SQL statements

SET Assigns a data type and a value to a utility variable

SYSTEM Suspends operation of FastExport and executes any valid local operating system command

Table 1: FastExport Support Activity Commands (continued)

FastExport Command Function

Table 2: FastExport Task Activity Commands

FastExport Command Function

BEGIN EXPORT Signifies the beginning of an export task and sets the specifications for the task sessions with
the Teradata Database

END EXPORT Signifies the end of an export task and initiates processing by the Teradata Database

EXPORT Provides:

• The client system destination and file format specifications for the export data retrieved
from the Teradata Database

• A generated MultiLoad script file which can later reload the export data back into the
Teradata Database

FIELD Specifies a field of the input record that provides data values for the constraint parameters of
the SELECT statement

FILLER Specifies a field of the input record that will not be sent to the Teradata Database as part of
the input record that provides data values for the constraint parameters of the SELECT
statement

IMPORT Defines the client file that provides the USING data values for the SELECT statement

LAYOUT Specifies, in conjunction with an immediately following sequence of FIELD and FILLER
commands, the layout of the file that provides data values for the USING modifier of the
SELECT statement
Teradata FastExport Reference 17

Chapter 1: Overview
FastExport Commands
 FastExport supports a subset of Teradata SQL statements. As a result, other utilities do not
have to be invoked to perform routine database maintenance functions before executing
FastExport utility tasks. For example, the supported Teradata SQL statements can be used to:

• Create or modify the table to export from

• Establish a database as an explicit table-name qualifier

• Add checkpoint specifications to a journal table

Note: The following restrictions apply to Teradata SQL statements in FastExport job scripts:

• FastExport supports only the Teradata SQL statements listed in Table 3

• Except for the SELECT statement, the supported Teradata SQL statements must appear
either before or after an export task specification—they cannot appear between the
BEGIN EXPORT and the END EXPORT commands of an export task

• The SELECT statement is supported only within an export task specification—it must
appear after the BEGIN EXPORT command and before the END EXPORT command of
an export task

Teradata SQL statements supported by Teradata FastExport are listed in Table 3. To use other
Teradata SQL statements, exit FastExport and enter them from another application, such as
Basic Teradata Query (BTEQ).

Table 3: Supported Teradata SQL Statements in FastExport

Teradata SQL Statement Function

ALTER TABLE Changes the column configuration or options of an existing table

CHECKPOINT Adds a checkpoint entry to a journal table

COLLECT STATISTICS Collects statistical data for one or more columns of a table

COMMENT Stores or retrieves comment string associated with a database object

CREATE DATABASE
CREATE MACRO
CREATE TABLE
CREATE VIEW

Creates a new database, macro, table, or view

DATABASE Specifies a new default database for the current session

DELETE Removes rows from a table

DELETE DATABASE Removes all tables, views, and macros from a database

DROP DATABASE Drops the definition for an empty database from the Data Dictionary

DROP TABLE Removes a table from the Teradata Database

GIVE Transfers ownership of a database to another user

GRANT Grants access privileges to a database object

INSERT Inserts new rows to a table

MODIFY DATABASE Changes the options of an existing database
18 Teradata FastExport Reference

Chapter 1: Overview
FastExport Example
For syntax and a complete description of each Teradata SQL statement, see SQL Data
Definition Language and SQL Data Manipulation Language.

FastExport Example

The following FastExport job script example executes a single SELECT statement and returns
the results to a data set on the client system:

.LOGTABLE utillog ; /* define restart log */

.LOGON tdpz/user,pswd ; /* DBC logon string */

.BEGIN EXPORT /* specify export function */
SESSIONS 20; /* number of sessions to be used */

.LAYOUT UsingData ; /* define the input data */
.FIELD ProjId * Char(8) ; /* values for the SELECT */
.FIELD WkEnd * Date ; /* constraint clause. */

.IMPORT INFILE ddname1 /* identify the file that */
LAYOUT UsingData ; /* contains the input data */

.EXPORT OUTFILE ddname2 ; /* identify the destination */
/* file for exported data */

SELECT EmpNo, Hours FROM CHARGES /* provide the SQL SELECT */
WHERE WkEnd = :WkEnd /* statement with values */
AND Proj_ID = :ProjId /* provided by the IMPORT */
ORDER BY EmpNo ; /* command */

.END EXPORT ; /* terminate the export */
/* operation */

.LOGOFF ; /* disconnect from the DBS */

RENAME Changes the name of an existing table, view, or macro

REPLACE MACRO

REPLACE VIEW

Redefines an existing macro or view

REVOKE Rescinds access privileges to a database object

SET QUERY_BAND Allows a set of name-value pairs to be defined by the user and/or
middle tier application so they can be customized to each
application’s unique needs

SET SESSION COLLATION Overrides the collation specification for the current session

UPDATE Changes the column values of an existing row in a table

Table 3: Supported Teradata SQL Statements in FastExport (continued)

Teradata SQL Statement Function
Teradata FastExport Reference 19

Chapter 1: Overview
FastExport Example
20 Teradata FastExport Reference

CHAPTER 2

Using FastExport

This chapter provides detailed information about using the FastExport utility. Topics include:

• Invoking FastExport

• Terminating FastExport

• Restarting a Paused FastExport Job

• Programming Considerations

• Using INMOD, OUTMOD, and Notify Exit Routines

• Writing a FastExport Job Script

• Using Checkpoints in a Single Export Job

Invoking FastExport

This section describes file requirements, syntax, and run-time parameters for invoking
FastExport.

File Requirements

In addition to the output data destination, FastExport accesses four different data sets/files or
input/output devices. Table 4 lists Data Sets, Files and Devices for Teradata FastExport.

When running FastExport in interactive mode, the terminal keyboard functions as the
standard input device and the display screen is the standard output/error device. When
running FastExport in batch mode, a data set or file name must be specified for each of these
functions. The method of doing this varies, depending on the configuration of the client
system:

Table 4: Data Sets, Files and Devices for Teradata FastExport

Data Set/File or Device Provides

Standard input FastExport commands and Teradata SQL statements that make up a
FastExport job

Standard output Destination for FastExport output responses and messages

Standard error Destination for FastExport errors

Configuration Optional specification of FastExport utility default values
Teradata FastExport Reference 21

Chapter 2: Using FastExport
Invoking FastExport
• On network-attached client systems, use the standard redirection mechanism
(< infilename and > outfilename) to specify the FastExport files when invoking the utility.

• On channel-attached client systems, use standard z/VM EXEC or z/OS JCL control
statements (FILEDEF and DD) to allocate and create the FastExport data sets or files
before invoking the utility.

Note: On z/OS client systems, the export file should not be a member of a partitioned data
set (PDS). If it is, and a Teradata Database or client system failure interrupts the
FastExport job, the restart operation will fail.

Interactive Mode

To invoke FastExport in interactive mode, enter fexp at the system command prompt.

fexp

FastExport displays the following message to begin an interactive session:

===
= FastExport Utility Release FEXP.mm.mm.mm.mmm =
= Platform xxxx =
===
= =
= Copyright 1990-2008, Teradata Corporation. ALL RIGHTS RESERVED.=
= =
===

where mm.mm.mm.mmm is the release level of the FastExport utility software.

Batch Mode

This section covers invoking FastExport in batch mode on network-attached and channel-
attached client systems.

For a description of how to read syntax diagrams used in this book, see Appendix A: “How to
Read Syntax Diagrams.”

Batch Mode on Network-Attached Systems

To invoke FastExport in batch mode on network-attached client systems, see the run-time
parameter descriptions in Table 6 on page 25 and use the following syntax:

2410D008

fexp

-M max-sessions

-N min-sessions

-r ?fastexport command?

-c character-set-name

-e filename

-b < infilename > outfilename

-s ?statusreport?
-y

-i scriptencoding

-u outputencoding

-V
22 Teradata FastExport Reference

Chapter 2: Using FastExport
Invoking FastExport
Batch Mode on Channel-Attached z/OS Systems

To invoke FastExport in batch mode on channel-attached z/OS client systems, see the run-
time parameter descriptions in Table 5 on page 23 and use the following syntax.

Batch Mode on Channel-Attached z/VM Systems

To invoke FastExport in batch mode on channel-attached z/VM client systems, see the run-
time parameter descriptions in Table 5 on page 23 and use the following syntax.

Note: On z/VM, use the following statement before the EXEC FASTEXPT statement:

"GLOBAL LOADLIB DYNAMC"

Run-time Parameters

Table 5 lists FastExport run-time parameters for channel-attached configurations.

2410D010

// EXEC TDSFEXP

BRIEF

CHARSET = character-set-name

ERRLOG = filename

"fastexport - command "

FEXPPARM = ? ?

MAXSESS = max-sessions

MINSESS = min-sessions

STATUS =on off

,

I
RVERSION

2410C009

EXEC FASTEXPT

BRIEF

CHARSET=character-set-name

ERRLOG=filename

"fastexport-command "

MAXSESS=max-sessions

STATUS=on off

MINSESS=min-sessions

I
RVERSION

Table 5: Run-time Parameter Descriptions (Channel-Attached Systems)

Parameter Description

BRIEF Reduced print output run-time parameter that limits FastExport
printout to the least information required to determine the success
or failure of the job
Teradata FastExport Reference 23

Chapter 2: Using FastExport
Invoking FastExport
CHARSET=
character-set-name

Character set specification for the FastExport job

A character set name can be specified. The character set
specification remains in effect for the entire FastExport job, even if
the Teradata Database resets, causing the FastExport job to be
restarted.

Caution: The character set specification does not remain in effect if
the client system fails, or if the FastExport job is
cancelled. In these cases, when resubmitting the job, use
the same character set specification which was used on
the initial job. If a different character set specification is
used when a job is resubmitted, the data loaded by the
restarted job does not appear the same as the data loaded
by the initial job.

If a character set specification is not entered, then FastExport uses
the specifications in the CLIv2 default files: HSHSPB for channel-
attached client systems.

Otherwise, the default is whatever character set is specified for the
Teradata Database whenever FastExport is invoked.

Note: When using UTF8 client character set on the mainframe, the
client character set name needs to be specified by the runtime
parameter (that is, CHARSET=UTF8).

Note: For other ways to specify the character set, see “Character Set
Specification” on page 41.

ERRLOG=
filename

Alternate file specification for FastExport error messages

On channel-attached client systems, the alternate file specification is
limited to eight characters and:

• On z/OS, it must be a DDNAME defined in the JCL

• On z/VM, it must be an existing file definition (FILEDEF)

There is no default error log filename specification.

“fastexport command” Invocation option that can signify the start of a FastExport job

It is usually a RUN FILE command that specifies the file containing
the FastExport job script since only one command can be specified.

Use the FILEDEF or DD control statements to specify the input and
output files before invoking the utility.

MAXSESS = max-sessions Maximum number of FastExport sessions logged on to the Teradata
Database

Maximum specification must be greater than zero and no more than
the total number of AMPs on the system.

Default is one session for each AMP.

MINSESS = min-sessions Minimum number of FastExport sessions required to run the job

Minimum specification must be greater than zero.

Default is 1.

Table 5: Run-time Parameter Descriptions (Channel-Attached Systems) (continued)

Parameter Description
24 Teradata FastExport Reference

Chapter 2: Using FastExport
Invoking FastExport
Table 6 lists FastExport run-time parameters for network-attached configurations.

RVERSION Display version number and stop

STATUS ON|OFF Five-minute status reporting

Use ON if enabled (the default) or OFF if disabled.

Table 6: Run-time Parameter Descriptions (Network-Attached Systems)

Parameter Description

< infilename Name of the standard input file that contains the FastExport
commands and Teradata SQL statements on network-attached client
systems

The infilename specification redirects the standard input (stdin). If
an infilename specification is not entered, the default is stdin.

> outfilename Name of the standard output file for FastExport messages on
network-attached systems

The outfilename specification redirects the standard output (stdout).

If an outfilename specification is not entered, the default is stdout.

Caution: If an outfilename specification is used to redirect stdout,
do not use the same outfilename as an output or echo
destination in the ROUTE MESSAGES command. Doing
so produces incomplete results because of the conflicting
write operations to the same file.

-b Reduced print output run-time parameter that limits the FastExport
printout to the least information required to determine the success
or failure of the job

Table 5: Run-time Parameter Descriptions (Channel-Attached Systems) (continued)

Parameter Description
Teradata FastExport Reference 25

Chapter 2: Using FastExport
Invoking FastExport
-c character-set-name Character set specification for the FastExport job

A character set name can be specified. A character set specification
remains in effect for the entire FastExport job, even if the Teradata
Database resets, causing the FastExport job to be restarted.

Caution: The character set specification does not remain in effect if
the client system fails, or if the FastExport job is cancelled.
In these cases, when resubmitting the job, the same
character set specification must be used that was used on
the initial job. If a different character set specification is
used when a job is resubmitted, the data loaded by the
restarted job does not appear the same as the data loaded
by the initial job.

If a character set specification is not entered, then FastExport uses
the specifications in the CLIv2 default files: clispb.dat for network-
attached client systems.

Otherwise, the default is whatever character set is specified for the
Teradata Database whenever you invoke FastExport.

Note: When using UTF16 client character set on the network, the
client character set name needs to be specified by the run-time
parameter (that is, -c UTF16).

Note: For other ways to specify the character set, see “Character Set
Specification” on page 41.

-e filename Alternate file specification for FastExport error messages

Specifying an alternate file name produces a duplicate record of all
FastExport error messages; the entire output stream does not have to
be viewed to determine why a job failed.

There is no default error log filename specification.

Table 6: Run-time Parameter Descriptions (Network-Attached Systems) (continued)

Parameter Description
26 Teradata FastExport Reference

Chapter 2: Using FastExport
Invoking FastExport
-i scriptencoding Encoding form of the job script

The parameter is introduced for use with the UTF16 client character
set, so it is only valid when UTF16 client character set is used. If the
client character set being used is not UTF16 and the parameter is
specified, FastExport reports an error and terminates.

The valid values are UTF8, UTF16, UTF16-BE, and UTF16-LE.

• UTF8 indicates the job script is in UTF8 character set

• UTF16 indicates the job script is in UTF16 character set without
specifying the endianness

• UTF16-BE indicates the job script is in big endian UTF16
character set

• UTF16-LE indicates the job script is in little endian UTF16
character set. Or, if UTF16-LE is specified but the UTF-16 Byte
Order Mark (BOM) in the script file indicates the script is in big
endian, FastExport reports an error and terminates.

The UTF16 or UTF8 BOM can be present or absent in the script file.
Specify the input script format with -i runtime parameter
(mandatory) and specify session character set with -c runtime
parameter (mandatory) to ensure that the BOM in the script file is
processed correctly.

When UTF16 is specified and the UTF-16 BOM is present in the
script file, FastExport will interpret the script according to the
endianness indicated by the UTF-16 BOM. When the UTF16 BOM is
not present, FastExport will interpret the script according to the
endianness indicated by the option value. If the endianness is not
indicated by the option value (that is, UTF16 is specified instead of
UTF16-BE or UTF16-LE), FastExport will interpret the job script in
UTF16 according to the endianness of the client system where the
FastExport job invoked. The specified encoding character set applies
to all script files included by the .RUN FILE commands.

When this runtime parameter is not specified and UTF16 client
character is used, FastExport will interpret the job script in UTF16.
When UTF8 is specified, FastExport will interpret the job script in
UTF8 and will convert SQL and DML statements in the script from
UTF8 to UTF16 before sending the SQL and DML statements to
Teradata Database.

-M max-sessions Maximum number of FastExport sessions logged on to the Teradata
Database

Maximum specification must be greater than zero and no more than
the total number of AMPs on the system.

Default is one session for each AMP.

-N min-sessions Minimum number of FastExport sessions required to run the job.

Minimum specification must be greater than zero.

Default is 1.

Table 6: Run-time Parameter Descriptions (Network-Attached Systems) (continued)

Parameter Description
Teradata FastExport Reference 27

Chapter 2: Using FastExport
Invoking FastExport
Note: For sample JCL and commands that invoke FastExport on the different operating
system platforms, see Appendix B: “Invocation Examples.”

z/OS Example

The following procedure invokes FastExport on a channel-attached z/OS client system:

//FEXPRUN JOB 1,'FASTEXPORT',
// MSGCLASS=X,
// NOTIFY=FEXP,
//* TYPRUN=SCAN,
// CLASS=A
/*ROUTE PRINT TSO

-r 'fastexport command' Invocation option that can signify the start of a FastExport job

It is usually a RUN FILE command that specifies the file containing
the FastExport job script since only one command can be specified.

-s value Five-minute status reporting

For value, use ON if reporting is enabled, or OFF if disabled.

-u outputencoding Specifies the encoding form of the job output

The parameter is introduced for being used for UTF16 client
character set so it is only valid when UTF16 client character set is
used. If the client character set being used is not UTF16 and the
parameter is specified, FastExport reports an error and terminates.

The valid values are UTF16-BE, UTF16-LE, and UTF16:

• UTF16-BE instructs FastExport to print the job output in the big
endian UTF16 character set

• UTF16-LE instructs FastExport to print the job output in the
little endian UTF16 character set

• On big endian client systems, UTF16 instructs FastExport to print
the job output in big endian UTF16 character set

• On the little endian client systems, UTF16 instructs FastExport to
print the job out in little endian UTF16 character set

When the parameter is being used, it should be placed in front of the
other runtime parameters to ensure the whole job output will be
printed in the desired encoding form. If not placed ahead of the
other runtime parameters when invoking the job, a warning message
will be printed.

When the parameter is not specified and the client character set
being used is UTF16, the job output will be printed as UTF16.

-y Specification for the data encryption option

When specified at run time, all sessions will be encrypted.

-V Display version number and stop

Table 6: Run-time Parameter Descriptions (Network-Attached Systems) (continued)

Parameter Description
28 Teradata FastExport Reference

Chapter 2: Using FastExport
Invoking FastExport
//**
//* *
//* FASTEXPORT PROC *
//* *
//**
//*
//FEXP PROC PRM=,INPUT=
//FEXPSTP EXEC PGM=XPORT,PARM='&PRM'
//STEPLIB DD DISP=SHR,DSN=TERADATA.APPLOAD
// DD DISP=SHR,DSN=TERADATA.TRLOAD
//SYSPRINT DD SYSOUT=*
//OUTFILE DD DCB=(NCP=20,RECFM=VB,LRECL=1024,BLKSIZE=32009),
//SYSIN DD DISP=SHR,DSN=&INPUT
// PEND
//**
//* *
//* RUN FASTEXPORT *
//* *
//**
//FEXPRUN EXEC PROC=FEXP
//FEXPSTP.SYSIN DD DATA,DLM=##
.
.
.
FastExport commands
.
.
.
//OUTPUT DD SYSOUT=*

Note: FastExport does not automatically block output records. If the output need to be
blocked:

• Specify blocked data (for example, FB) in the record format (RECFM) parameter of the
data control block (DCB)

• Specify the block size in the BLOCKSIZE parameter of the DCB

To enhance I/O performance (at the cost of increased storage), increase the value of the
network control program (NCP) parameter on an output DCB in JCL. The maximum value
for NCP is 99. The additional storage required is the NCP value multiplied by the block size of
the output device.

z/VM Example

The following EXEC procedure invokes FastExport on a channel-attached z/VM client system:

/* Run the FastExport program on z/VM. */
/* Accepts input from terminal (sysin) */
/* Sends output to terminal (sysprint) */
/* */
/* Before running this EXEC, the user */
/* must issue the z/VM LINK and ACCESS */
/* commands to link to the CLI */
/* minidisk and to link to the Sas C */
/* runtime minidisk. */
/* */
"GLOBAL LOADLIB DYNAMC"
Teradata FastExport Reference 29

Chapter 2: Using FastExport
Invoking FastExport
"GLOBAL TXTLIB CLI"
"GLOBAL LOADLIB LSCTRL"
"CP SET TIMER REAL"
"FILEDEF SYSPRINT TERMINAL (LRECL 84 RECFM V"
"FILEDEF SYSIN TERMINAL (LRECL 84 RECFM V"
"XPORT"
exit rc

UNIX and Windows Examples

The following are examples of four ways to invoke FastExport on network-attached UNIX and
Windows client systems:

• fexp < /home/fexpuser/tests/test1
> /home/fexpuser/tests/out1

This command specifies both an input file and an output file:

• /home/fexpuser/tests/test1 is the input file that provides the FastExport job script

• /home/fexpuser/tests/out1 is the destination file for output data

• fexp < /home/fexpuser/tests/test1

This command specifies only an input file. In this case, the output is written to the
standard output device, which is usually a terminal.

• fexp

This command specifies neither an input nor an output file. In this case, the terminal.
provides both the command input and output data destination.

• fexp -r '.RUN FILE exp.startup;'

Note: Single quotes surrounding the above command line are only valid in a UNIX
environment. Double quotes surrounding the above command line are valid in both the
UNIX and Microsoft Windows environments.

This command uses the -r invocation option to specify the FastExport RUN FILE
command. In this case, the FastExport job script is in the exp.startup file.
30 Teradata FastExport Reference

Chapter 2: Using FastExport
Terminating FastExport
Terminating FastExport

There are two ways to terminate FastExport:

• Normal Termination

• Abort Termination

Either way ends the FastExport sessions and logs off the Teradata Database. A normal
termination, however, does so in an orderly, controlled fashion, and returns messages
indicating the status of the FastExport job. An abort termination does not.

Normal Termination

Use the FastExport LOGOFF command in a FastExport job script to terminate the utility
normally on both network-attached and channel-attached client systems:

FastExport logs off all sessions with the Teradata Database and returns a status message
indicating:

• The total processor time that was used

• The job start and stop date/time

• The highest return code that was encountered:

• 0 if the job completed normally

• 4 if a warning condition occurred

• 8 if a user error occurred

• 12 if a fatal error occurred

• 16 if no message destination is available

FastExport also:

• Either maintains or drops the restart log table, depending on the success or failure of the
job

• If specified, returns the optional retcode value to the client operating system

For more information about return codes and the conditions that maintain or drop the restart
log table, see “LOGOFF” on page 109.

Abort Termination

The procedure for aborting a FastExport job depends on whether the utility is running on a
network-attached or a channel-attached client system.

2409A033

.LOGOFF

retcode

;

Teradata FastExport Reference 31

Chapter 2: Using FastExport
Restarting a Paused FastExport Job
 To abort a FastExport job running on a network-attached client system:

✔ Press the Control + C key combination three times on the workstation keyboard.

To abort a FastExport job running on a channel-attached client system:

✔ Cancel the job from the client system console.

Whenever a FastExport job terminates abnormally:

• The processing of any associated SELECT statement is also terminated, and its database
access locks are released

• If the Teradata Database has assembled export data in response to a SELECT statement,
the spool table containing the export data is deleted

• The restart log table is not dropped from the Teradata Database

After aborting a FastExport job, either:

• Restart the job and allow it to run to completion. This, in most cases, is the preferred
alternative.

or

• Drop the restart log table from the Teradata Database. This alternative requires:

• Restarting the entire job, from the beginning, as a complete new job

or

• Abandoning the job, completely

In the case of a FastExport job with only one select request, the results of the two alternatives
are essentially the same, because aborting the single select request effectively aborts the entire
job. The significant difference occurs when the FastExport job has multiple export tasks, or if
it uses an input file that generates multiple select requests.

Restarting a Paused FastExport Job

This section describes restarting FastExport jobs that have been paused or interrupted.

Paused FastExport Jobs

A paused FastExport job is one that terminates abnormally, without dropping the restart log
table from the Teradata Database. The paused condition can be intentional, or the result of a
system failure or error condition.

A FastExport job can be paused intentionally by using the “Abort Termination” procedure
described earlier in this chapter.

Unintentional conditions that can pause a FastExport job include:

• A FastExport job script error
32 Teradata FastExport Reference

Chapter 2: Using FastExport
Restarting a Paused FastExport Job
• A hardware failure or software error condition

• An application processor (AP) reset condition

FastExport automatically restarts some paused jobs. Others must be manually restarted. The
following subsections describe the manual restart procedure and the factors that affect
FastExport restart operations under the different pause conditions.

To manually restart a paused FastExport job, resubmit the entire FastExport job script, using
the same restart log table specification. The FastExport utility:

1 Reestablishes sessions with the Teradata Database

2 Reads the restart log table to determine the restart point

3 Resumes processing the FastExport job script

After a Job Script Error

When FastExport encounters an error in a job script, it generates a diagnostic error message
and stops with a nonzero return code. At this point, the script can be modified to correct the
error and resubmit the FastExport job. The utility resumes processing at the statement
following the last one that completed successfully.

Note: When correcting script errors, make changes at or after the indicated error. FastExport
does not repeat the commands that executed successfully, but the job will fail, with additional
error messages, if the utility detects changes before the indicated error.

After Hardware Failures or Software Error Conditions

FastExport restarts automatically after system recovery from the following types of hardware
failures and software error conditions:

• Down AMP

• CLIv2 error on a client system

• Network failure

• Nonrecoverable I/O error

• Teradata Database restart

If the failure occurred while FastExport was processing a job script with a single select request,
then the utility resumes processing after system recovery by resubmitting the one select
request.

If the failure occurred while FastExport was processing a job script with multiple select
requests, then the utility resumes processing after system recovery by resubmitting the last
select request that was submitted before the failure occurred.

After an AP Reset Condition

When a FastExport job is interrupted by a resetting AP on the Teradata Database, the restart
response depends on the environment in which the utility is running:

• On the resetting AP
Teradata FastExport Reference 33

Chapter 2: Using FastExport
Programming Considerations
• On a nonresetting AP

• On a channel-attached client system

If an AP reset condition occurs and FastExport is running on a resetting AP, then the
FastExport job is halted and must be manually restarted.

If an AP reset condition occurs and FastExport is running on a nonresetting AP, then the
FastExport job may or may not be halted, depending on whether it has sessions connected
through the resetting AP:

• If the FastExport job has sessions connected through the resetting AP, the utility
automatically:

• Logs off all sessions

• Logs them back on

• Rolls back to the most recent checkpoint

• Resumes processing

• If the FastExport job does not have sessions connected through the resetting AP, the utility
is not affected by the AP reset condition.

The increased session loading caused by the reconnection of other sessions through the
resetting AP may degrade the system response time.

If an AP reset condition occurs and FastExport is running on a channel-attached client system
with AP reset containment enabled, then the FastExport job is halted, but does not need to be
manually restarted. FastExport automatically:

• Logs off all sessions

• Logs them back on

• Rolls back to the most recent checkpoint

• Resumes processing

Programming Considerations

This section describes things to consider when designing and coding FastExport job scripts.

FastExport Configuration File

Use a FastExport configuration file to set the initial default values for the following operating
parameters when FastExport is invoked:

• CHARSET

• ERRLOG

• BRIEF

• MAXSESS

• MINSESS

• STATUS
34 Teradata FastExport Reference

Chapter 2: Using FastExport
Programming Considerations
• DATAENCRYPTION

• CONFIGERRORS

The values specified in the FastExport configuration file override the internal utility default
values for these parameters.

The configuration file parameters themselves can be overridden by the commands in the
FastExport job script, and by the corresponding run-time parameters, as shown in Table 6 on
page 25. The order of preference for these parameters, from highest to lowest, is:

1—FastExport script commands
2—Run-time parameters
3—FastExport configuration file specifications
4—FastExport default values

Configuration File Name and Location

On network-attached systems, the FastExport configuration file must be named fexpcfg.dat

The file must be located in either:

• The directory from which FastExport is launched

• The directory specified in the FEXPLIB environment variable

On channel-attached systems, the DD statement for the FastExport configuration file must be
labeled FEXPCFG.

Configuration File Contents

The FastExport configuration file can have up to eight entries, one for each parameter:

CHARSET=character-set-name
ERRLOG=filename
BRIEF=on/off
MAXSESS=max-sessions
MINSESS=min-sessions
STATUS=ON/OFF
DATAENCRYPTION=ON/OFF
CONFIGERRORS=IGNORE/TERMINATE

where

• character-set-name is the character set specification for the FastExport job

• filename is the alternate file specification for FastExport error messages

• BRIEF on/off configures the reduced print output specification for the FastExport job

• max-sessions is the MAXSESS specification for the maximum number of FastExport
sessions logged on to the Teradata Database

• min-sessions is the MINSESS specification for the minimum number of FastExport
sessions required to run the job

• STATUS ON/OFF specifies the five-minute status reporting for the FastExport job

• DATAENCRYPTION ON/OFF specifies the data encryption option for the FastExport job

• IGNORE/TERMINATE configures the option for the FastExport configuration file error
handling.
Teradata FastExport Reference 35

Chapter 2: Using FastExport
Programming Considerations
The FastExport configuration file can also have comment statements preceded by a number
sign (#) character.

For a complete description of the parameter specifications listed here, see Table 5 on page 23
and Table 6 on page 25.

Configuration File Processing

FastExport automatically checks for a configuration file each time the invocation command is
entered. Upon locating a configuration file, the utility sets the defaults as specified, produces
the appropriate output messages, and begins processing the FastExport job.

By default, any invalid configuration file entry or syntax error will abort the FastExport job
immediately. The first invalid parameter will be reported, the rest of the configuration
parameters will not be checked.

However, if CONFIGERRORS=IGNORE is specified in the configuration file, any subsequent
configuration file problems will be reported but not affect the FastExport return code.
FastExport will continue to process the next entry in the configuration file.

If CONFIGERRORS=TERMINATE is specified in the configuration file, any subsequent
invalid configuration file entry will abort the FastExport job.

If there is no configuration file, the utility begins processing the FastExport job without an
error indication. The configuration file is an optional feature of FastExport, and its absence is
not considered to be an error condition.

Generated MultiLoad Script File

When the MLSCRIPT option is specified in the EXPORT command, FastExport uses the
functional parameters of the export task to generate a MultiLoad script file that can be used
later to reload the export data back into the Teradata Database.

The following subsections provide an example of a generated MultiLoad script file and
describe the changes which might need to made before running the file, including the impact
of OUTMOD routines and multiple select statements in FastExport job.

Script File Example

/* Date of extract: SUN JUN 27, 1999 */
/* Time of extract: 16:59:15 */

/* Total records extracted for select 1 = 2 */
/* Output record length for select 1 = 41 variable */

/* NOTE: THE SCRIPT BELOW MAY NEED TO BE MODIFIED BEFORE RUNNING. */

.LOGTABLE LOGTABLE165915;

.LOGON slugger/fexp_usr,fexp_usr;

.SET DBASE_TARGETTABLE TO 'fexp_usr';
.SET DBASE_WORKTABLE TO 'fexp_usr';
.SET DBASE_ETTABLE TO 'fexp_usr';
36 Teradata FastExport Reference

Chapter 2: Using FastExport
Programming Considerations
.SET DBASE_UVTABLE TO 'fexp_usr';

.SET TARGETTABLE TO 'TABLE165915';

.BEGIN IMPORT MLOAD
 TABLES &DBASE_TARGETTABLE..&TARGETTABLE
 WORKTABLES &DBASE_WORKTABLE..WT_&TARGETTABLE
 ERRORTABLES &DBASE_ETTABLE..ET_&TARGETTABLE
 &DBASE_UVTABLE..UV_&TARGETTABLE;

.LAYOUT DATAIN_LAYOUT;
.FIELD COL001 1 INTEGER;
.FIELD COL002 5 DATE;
.FIELD COL003 9 CHAR(5);
.FIELD COL004 14 VARCHAR(8);
.FIELD COL005 * BYTEINT;
.FIELD COL006 * SMALLINT;
.FIELD COL007 * DECIMAL(5,2);
.FIELD COL008 * BYTE(2);
.FIELD COL009 * VARBYTE(3);
.FIELD COL010 * FLOAT;

.DML LABEL INSERT_DML;
INSERT INTO &DBASE_TARGETTABLE..&TARGETTABLE (
 COL001 = :COL001
,COL002 = :COL002
,COL003 = :COL003
,COL004 = :COL004
,COL005 = :COL005
,COL006 = :COL006
,COL007 = :COL007
,COL008 = :COL008
,COL009 = :COL009
,COL010 = :COL010
);

.IMPORT INFILE dedtfm09.dat
 FORMAT FASTLOAD
 LAYOUT DATAIN_LAYOUT
 APPLY INSERT_DML;

.END MLOAD;

.LOGOFF &SYSRC;

/* End of script */

Modifying the MultiLoad Script File

If necessary, modify the following specifications in the generated MultiLoad script file:

• Target table name

• Column names in the INSERT statement

• Field names in the LAYOUT statement

• Logon string

• Log table name
Teradata FastExport Reference 37

Chapter 2: Using FastExport
Programming Considerations
• Database of the following tables:

• Target tables

• Work tables

• Error tables

• Unique violation tables

Additionally:

• If the FastExport job uses an OUTMOD routine, the layout specifications in the generated
MultiLoad script may need to be changed if the OUTMOD routine changes the record
length

• If the FastExport job uses multiple SELECT statements, the response rows must all have
the same structure. If the response rows have different structures, then the layout in the
generated MultiLoad script will not work. In this case, to use the generated MultiLoad
script file option:

• Use a separate FastExport task for each SELECT statement in a FastExport job

• In each corresponding EXPORT command, use the MLSCRIPT option with a different
fileid specification

FastExport Command Conventions

The following are command conventions to observe in FastExport job scripts.

Conditional Expressions

Conditional expressions return a value of:

• 0 if the condition evaluates to FALSE

• 1 if the condition evaluates to TRUE

With the following exceptions, FastExport handles conditional expressions as described in the
Teradata SQL reference documentation for the operating system environment:

• The LIKE operator is not supported in logical expressions that make up a conditional
expression. (The NOT IN operator is supported.)

• The following elements are not supported in arithmetic expressions that make up logical
expressions:

• The exponential operator

• Aggregate operators

• Arithmetic functions

Operators

Do not use words that are logical operators as keywords:
38 Teradata FastExport Reference

Chapter 2: Using FastExport
Programming Considerations
Reserved Words

Commands that are supported by FastExport do not use reserved words, except:

• Those that are operators

• Where a specific expression is allowed

Though there is no specific restriction against doing so, it is recommended that the following
be avoided as variable names:

• FastExport command keywords

• Teradata SQL reserved words

Variables

FastExport supports the following variables.

Predefined System Variables

Table 7 lists the supported predefined system variables.

Note: System variables can only be referenced. They cannot be modified.

AND

BETWEEN

EQ

GE

GT

IN

IS

LE

LIKE

LT

MOD

NE

NOT

NULL

OR

Table 7: System Variables

Variable Name Description

&SYSDATE Eight-character date in yy/mm/dd format

&SYSDATE4 Ten-character date in yyyy/mm/dd format

&SYSDAY Three-character uppercase day of week specification: MON, TUE, WED,
THU, FRI, SAT, or SUN

&SYSOS Client operating system:

• For z/OS: VS1, z/OS, z/OS/SP, z/OS/ES

• For z/VM: z/VM/SP, z/VM/XA SP, z/VM/HPO, z/VM/XA, z/VM/
ESA

• UNIX

• Win32

&SYSRC Completion code of the last response from the Teradata Database

&SYSTIME Eight-character time in hh:mm:ss format
Teradata FastExport Reference 39

Chapter 2: Using FastExport
Programming Considerations
Date and Time Variables

The four date and time variables reflect the time when FastExport begins execution:

• &SYSDAY

• &SYSDATE

• &SYSDATE4

• &SYSTIME

The original values are maintained after a FastExport restart operation.

Note: Do not reference the values in numeric operations since the values are all character data
types.

ANSI/SQL DateTime Specifications

 ANSI/SQL DateTime specifications must be converted to fixed-length CHAR data types when
specifying column/field names in the FIELD command.

For a description of the fixed-length CHAR representations for each DATE, TIME,
TIMESTAMP, and INTERVAL data type specification, see “Usage Notes” on page 88.

Comments

Table 8 describes the C language style comments supported by FastExport.

&SYSUSER Client system dependent:

• z/VM userid

• z/OS batch userid. (z/OS batch returns userid only when a security
package such as RACF, ACF2, or Top Secret has been installed).

Table 7: System Variables (continued)

Variable Name Description

Table 8: C Language Comments

Comment Topic Description

Beginning and Ending
Delimiters

A comment begins with a slash asterisk (/*) character sequence and ends
with an asterisk slash (*/) sequence. All intervening text is treated as a
comment.

Comment Destinations Comments are always written to the message destination, and they may
or may not be sent to the Teradata Database.

Comments that are followed by a semicolon character are considered to
be stand-alone comments:

/*Comment text*/;
SELECT C1 FROM TABLE1;

In this case, the comment is associated with the SELECT statement and
is sent to the Teradata Database.
40 Teradata FastExport Reference

Chapter 2: Using FastExport
Programming Considerations
Character Set Specification

Teradata Database allows a character set to be established when invoking FastExport. For
example, if a table or database names that have kanji double-byte characters or mixed single-
byte and multibyte characters, the appropriate character set can be chosen.

Table 9 lists the standard character sets supported by FastExport.

Invalid Within String or
Character Literals

Comments cannot occur within string or character literals. A /* within a
quoted string is not treated as the beginning of a comment.

Nested Comments FastExport supports nested comments, but the Teradata Database does
not.

Always delimit nested comments with a semicolon character.

If a semicolon is used to delimit a nested comment, it is taken as part of
the current command or statement. If that happens to be a Teradata
SQL statement, it will be sent to the Teradata Database, producing a
syntax error.

Variable Substitution Substitution of values for variable names continues within comments.
Use two ampersand characters (&&) when the variable name is
required.

Using Comments With
Teradata SQL Statements

If a comment is used with a Teradata SQL statement, add a semicolon to
the end of the comment if the comment should not be sent to the
Teradata Database.

If a semicolon is not used, FastExport sends the comment to the
Teradata Database along with the Teradata SQL statement.

Table 8: C Language Comments (continued)

Comment Topic Description

Table 9: Standard Character Sets Supported by FastExport

Name Description System Configuration

EBCDIC Latin Channel-attached

ASCII Latin Network-attached

HANGULEBCDIC933_1II Korean Channel-attached

HANGULKSC5601_2R4 Korean Network-attached

KATAKANAEBCDIC Japanese Channel-attached

KANJIEBCDIC5026_0I Japanese Channel-attached

KANJIEBCDIC5035_0I Japanese Channel-attached

KANJIEUC_0U Japanese Network-attached

KANJISJIS_0S Japanese Network-attached

SCHEBCDIC935_2lJ Simplified Chinese Channel-attached
Teradata FastExport Reference 41

Chapter 2: Using FastExport
Programming Considerations
Site-Defined Character Sets

When the character sets defined are not appropriate for a site, define the character sets shown
in Table 10.

Note: For information about defining a character set appropriate for a site, see International
Character Set Support.

Rules for Using Chinese and Korean Character Sets

Observe the following rules when using Chinese and Korean character sets on channel-
attached and network-attached platforms:

• Object Names

Object names are limited to A-Z, a-z, 0-9, and special characters such as $ and _.

• Maximum String Length

SCHGB2312_1T0 Simplified Chinese Network-attached

TCHBIG5_1R0 Traditional Chinese Network-attached

TCHEBCDIC937_3IB Traditional Chinese Channel-attached

UTF-8 Unicode character set Network-attached

UTF-16 Unicode character set Network-attached

Table 10: Site-Defined Character Sets

Name Description System Configuration

SDKATAKANAEBCDIC_4IF Site-defined Japanese Channel-Attached

SDKANJIEBCDIC5026_4IG Site-defined Japanese Channel-Attached

SDKANJIEBCDIC5035_4IH Site-defined Japanese Channel-Attached

SDKANJIEUC_1U3 Site-defined Japanese Network-Attached

SDKANJISJIS_1S3 Site-defined Japanese Network-Attached

SDSCHEBCDIC935_6IJ Site-defined Simplified Chinese Channel-attached

SDTCHEBCDIC937_7IB Site-defined Traditional Chinese Channel-attached

SDSCHGB2312_2T0 Site-defined Simplified Chinese Network-Attached

SDTCHBIG5_3R0 Site-defined Traditional Chinese Network-Attached

SDHANGULEBCDIC933_5II Site-defined Korean Channel-Attached

SDHANGULKSC5601_4R4 Site-defined Korean Network-Attached

Table 9: Standard Character Sets Supported by FastExport (continued)

Name Description System Configuration
42 Teradata FastExport Reference

Chapter 2: Using FastExport
Programming Considerations
The Teradata Database requires two bytes to process each of the Chinese or Korean
characters. This limits both request size and record size. For example, if a record consists of
one string, the length of that string is limited to a maximum of 32,000 characters or
64,000 bytes.

Note: For more information about Chinese or Korean character set restrictions for the
Teradata Database, or for more information about alternate character sets, see
International Character Set Support.

If Japanese language support is not required, specify EBCDIC or ASCII as the character set
parameter.

Unicode Character Sets

UTF-8 and UTF-16 are two of the standard ways of encoding Unicode character data. The
UTF8 client character set supports UTF-8 encoding. Currently, Teradata Database supports
UTF-8 characters that can consist of from one to three bytes. The UTF16 client character set
supports UTF-16 encoding. Currently, the Teradata Database supports the Unicode 2.1
standard, where each defined character requires exactly 16 bits.

There are restrictions imposed by Teradata Database on using the UTF8 or UTF16 character
set. For restriction details, see International Character Set Support.

UTF8 Character Sets

FastExport supports UTF8 character set on network-attached platforms and IBM z/OS. When
using UTF8 client character set on IBM z/OS, the job script must be in Teradata EBCDIC.
FastExport translates commands in the job script from Teradata EBCDIC to UTF8 during the
export.

Be sure to check the definition in International Character Set Support to determine the code
points of any special characters required in the job script.

Different versions of EBCDIC do not always agree as to the placement of these characters. See
Appendix E of International Character Set Support for details on mapping Teradata EBCDIC
and Unicode.

UTF16 Character Sets

FastExport supports UTF16 character set on network-attached platforms. In general, the
command language and the job output should be the same as the client character set used by
the job. However, for users’ convenience and because of the special property of Unicode, the
command language and the job output are not required to be the same as the client character
set when using UTF16 character set. When using UTF16 character set, the job script and the
job output can either be in UTF-8 or UTF-16 character set. This is provided by specifying
runtime parameters "-i" and "-u" when the job is invoked.

For more information on runtime parameters “-i” and “-u”, see parameters -i scriptencoding
and -u outputencoding in Table 6 on page 25.

Table 11 describes four ways to either specify the character set or accept a default specification.
Teradata FastExport Reference 43

Chapter 2: Using FastExport
Programming Considerations
Using AXSMOD

When an AXSMOD is used, FastExport will pass the session character set as an attribute to the
AXSMOD for its possible use (most AXSMODs will not make any use of this information).
The attribute name will be CHARSET_NAME and it will be a variable length character string.

After FastExport passes the session character set to the AXSMOD successfully, FastExport will
pass export widths information that pertains to the current session character set as an
attribute to the AXSMOD for its possible use. The attribute name is EXPORT_WIDTHS.
FastExport extracts the export widths information from the data parcel returned by the HELP
SESSION command.

Table 11: Methods for Specifying Character Sets

Method Description

Client System Specification Another way is to specify the character set for a client system before
invoking FastExport by configuring the:

• HSHSPB parameter for channel-attached z/VM and z/OS
client systems

• clispb.dat file for network-attached UNIX and Windows client
systems

Note: The character-set-name specification used when to invoke
FastExport always takes precedence over the current client system
specification.

FastExport Utility Default If there is no character set specification in DBC.Hosts, then
FastExport defaults to:

• EBCDIC for channel-attached z/VM and z/OS client systems

• ASCII for network-attached UNIX client systems

Run-time Parameter
Specification

The best way to specify the character set is with the character set
run-time parameter when invoking FastExport, as described earlier
in this chapter:

• CHARSET=character-set-name for channel-attached z/VM and
z/OS client systems

• -c character-set-name for network-attached UNIX and Windows
client systems

For a list of valid character set names, see “Character Set
Specification” on page 41.

Teradata Database Default If a character-set-name specification is not used when FastExport is
invoked, and there is no character set specification for the client
system, then the utility uses the default specification in the Teradata
Database system table DBC.Hosts.

Note: If the DBC.Hosts table specification is relied upon for the
default character set, make sure that the initial logon is in the
default character set:

• EBCDIC for channel-attached z/VM and z/OS client systems

• ASCII for network-attached UNIX and Windows client systems
44 Teradata FastExport Reference

Chapter 2: Using FastExport
Programming Considerations
The export width information is passed as an array to the AXSMOD and is used by the
AXSMOD to calculate the size in bytes of exported fixed-length character columns. This size
depends not only on the number of characters in the data type (the n in CHAR(n)), but also
on the selected session character set, and the server character type (specified in the
CHARACTER SET clause of the CREATE TABLE statement). Each structure passed in the
array has information for one server character type. The export widths information structure
is defined as the following:

typedef struct pmExpWidth
 {
 pmUInt16 CharType; /* Server character type code. */
 pmUInt16 ExpWidth; /* Export width. */
 pmUInt16 ExpWidthAdj; /* Export width adjustment. */
 } pmExpWidth_t;

For more information about export width rules, seeUtilities.

Multibyte Character Sets

Multibyte character sets impact the operation of certain FastExport commands, as well as
object names in Teradata SQL statements, as shown in Table 12.

Table 12: Commands Impacting Multibyte Character Sets

FastExport
Command Affected Elements Impact

FIELD Field name The field name specified can have multibyte characters. In
addition, it can be referenced in:

• Other FIELD commands

• NULLIF and field concatenation expressions

• APPLY WHERE conditions in IMPORT commands

• Contain a NULLIF expression, which may use multibyte
characters

FILLER Filler name The name specified in a FILLER command can have multibyte
characters.

LAYOUT Layout name The layout name can:

• Have multibyte characters

• Be used in the LAYOUT clause of an IMPORT command

CONTINUEIF
condition

The CONTINUEIF condition can specify multibyte character
set character comparisons.

LOGON User name and
password

The user name and password can have multibyte characters.

LOGTABLE Table and database
names

The restart log table name and database name can have
multibyte characters.
Teradata FastExport Reference 45

Chapter 2: Using FastExport
Programming Considerations
Graphic Data Types

FastExport supports the following two-byte graphic data types in both the export data and the
file containing the FastExport job script:

• GRAPHIC

• VARGRAPHIC

• LONG VARGRAPHIC

Use the datadesc parameter of the FIELD and FILLER commands to define graphic data types
in the FastExport job script.

Graphic Constants

FastExport supports two forms of graphic constants:

• The graphic literal or string constant, which is allowed in the KANJIEBCDIC character set
on channel-attached z/VM and z/OS client systems. This type of constant must have an
even number of bytes within the quoted string to represent double-byte characters.

• The hexadecimal representation of graphic data used on both:

• Network-attached UNIX and Windows client systems

• Channel-attached z/VM and z/OS client systems

For more information about graphic constants and hexadecimal representations of them, see
information about Teradata SQL syntax and the lexicon in SQL Fundamentals for the
operating system environment.

Select Requests

A select request is one or more Teradata SQL SELECT statements that may be optionally
preceded by a LOCKING modifier. The following information might apply for a FastExport
job, depending on how select requests were created in that job.

IMPORT Commands

If an IMPORT command is used, FastExport executes the select request once for each select
data record, as specified by the FIELD commands. In this case, the response data for each
execution of the select request is concatenated into the output data set.

If an IMPORT command defines input variables for the WHERE condition, the external
names cited in the WHERE condition must correspond to the names in the FIELD
commands.

Note: Each name in the WHERE condition is preceded by a colon character, while the names
in the FIELD commands are not.

Multiple SELECT Statements

If select request has multiple SELECT statements, the Teradata Database may execute them in
parallel, but still returns the response data for the first statement first, then the response data
for the second, and so on.
46 Teradata FastExport Reference

Chapter 2: Using FastExport
Programming Considerations
When you specify an OUTMOD routine to process the output records, the Teradata Database
returns the FastExport job statement number with the response data for each SELECT
statement. Otherwise, there is nothing returned to the output data set to delimit the records
for one statement from those of the next.

LOCKING Modifiers

If a LOCKING modifier is used, the specified lock remains in effect during execution of all
statements within the request containing the modifier.

The Teradata Database:

• Implements all resource locks for the entire request before executing any of the statements
in the request

• Maintains the locks until all of the response data for the request has been moved to spool
tables

Note: The Teradata Database removes the resource locks before returning the data to the
client system.

Select Request Restrictions

FastExport select requests cannot:

• Specify a USING modifier. To submit data parameters as restraint parameters with a
SELECT statement, the must be defined using a FastExport IMPORT command with
supporting FIELD and FILLER commands.

• Access nondata tables, such as SELECT DATE or SELECT USER

• Be satisfied by a single AMP, such as a SELECT statement with a constraint containing an
equality condition on the primary index or unique secondary index columns of a table

Other than these restrictions, the Teradata Database parses and processes SELECT statements
from FastExport as it would from any other data access facility. For a complete description of
the Teradata SQL SELECT statement, see the Teradata SQL reference documentation for the
operating system environment.

Restrictions and Limitations

Table 13 describes the FastExport restrictions and limitations on operational features and
functions.

Table 13: FastExport Programming Restrictions and Limitations

Operational Feature/Function Restriction/Limitation

Maximum file size On UNIX MP-RAS operating system, the maximum file size that
is supported by FastExport is 2 gigabytes.

On Windows, Solaris SPARC, AIX, and HP-UX operating
systems, there is no file size restriction.
Teradata FastExport Reference 47

Chapter 2: Using FastExport
Programming Considerations
Termination Control Codes

When a FastExport job terminates, the utility returns a completion code to the client system:

• 00 = Normal completion

• 04 = Warning

• 08 = User error

• 12 = Severe internal error

• 16 = No message destination available

To avoid ambiguous or conflicting results, always use values greater than 20 when specifying a
return code with the LOGOFF command.

UNIX Signals

If running FastExport in a UNIX operating system, be aware of the UNIX signals used by
FastExport. The FastExport UNIX signals in any program module or routine cannot be used
with FastExport. Doing so causes an error in FastExport.

FastExport uses the following UNIX signals:

• SIGINT (interrupt signal)

Concurrent Load Utility Tasks The maximum number of concurrent FastExport tasks that can
run is variable; the limit can be controlled by the system
administrator. MaxLoadTasks may be overridden if TASM is
active.

Note: For the most up-to-date information on concurrent task
limits, see the description of the MaxLoadTask parameter of the
DBSControl utility in Utilities Volume 1. Additional information
is also available in the Teradata Dynamic Workload Manager User
Guide.

If a FastExport job exceeds the recommended limits, the Teradata
Database returns a 2633 error message indicating that too many
loads are running, and the utility retries until:

• It can execute the task

• It reaches the TENACITY hours time limit specified by the
BEGIN EXPORT command

Exponential operators Not allowed

Concatenation of data files Not allowed

Expressions Are evaluated from left to right, using the Teradata Database
order of preference, but can be overridden by parentheses

Hexadecimal Form FastExport does not accept and will not display object names
specified in internal Teradata Database hexadecimal form.

Table 13: FastExport Programming Restrictions and Limitations (continued)

Operational Feature/Function Restriction/Limitation
48 Teradata FastExport Reference

Chapter 2: Using FastExport
Using INMOD, OUTMOD, and Notify Exit Routines
• SIGQUIT (quit signal)

• SIGTERM (terminate signal)

Note: Signals are predefined messages sent between two UNIX processes to communicate
the occurrence of unexpected external events, or exceptions. Aborting a FastExport session
while FastExport is in the middle of processing a job is an example of an exception. In this
scenario, FastExport uses the UNIX signals to trap the abort command, disconnect all
sessions, do any necessary cleanup, and then terminate in an orderly manner.

Using INMOD, OUTMOD, and Notify Exit
Routines

The following sections provide information about how to use input modification (INMOD),
output modification (OUTMOD), and notify exit routines.

Overview

This section describes the different types of routines and when they might be used.

INMOD and OUTMOD Routines

The terms INMOD and OUTMOD are acronyms for input modification and output
modification routines. These are user-written routines that FastExport and other load/export
utilities can call to provide enhanced processing functions on:

• Input records before they are sent to the Teradata Database (INMOD routines)

• Output records before they are sent to the client system (OUTMOD routines)

Table 14 illustrates how FastExport supports both INMOD and OUTMOD routine calls in the
FastExport job script.

Notify Exit Routines

A notify exit routine specifies a predefined action to be performed whenever certain
significant events occur during a FastExport job.

Notify exit routines are especially useful in operator-free environments where job scheduling
relies heavily on automation to optimize system performance.

Table 14: INMOD and OUTMOD Routines

FastExport Command Specify Write to Routine

IMPORT INMOD Read and preprocess input data values from files on the
client system. These would then provide the USING data
for a subsequent SELECT statement.

EXPORT OUTMOD Validate and preprocess export data records from the
Teradata Database before writing them to files on the
client system.
Teradata FastExport Reference 49

Chapter 2: Using FastExport
Using INMOD, OUTMOD, and Notify Exit Routines
For example, by writing an exit in C (without using CLIv2) and using the NOTIFY_EXIT
option of the BEGIN EXPORT command, a routine can be provided to detect whether a
FastExport job succeeds or fails, how many records are exported, the return code for a failed
job, and so on.

Programming Considerations for Using Routines

This section describes programming languages supported for each type of routine, as well as
other related considerations.

Programming Languages

FastExport is written in:

• SAS/C for channel-attached z/VM and z/OS client systems

• C for network-attached UNIX and Windows client systems

In all cases, INMOD, OUTMOD, and notify exit routines are dynamically loaded at run time,
rather than link edited into the FastExport module.

INMOD, OUTMOD, and notify exit routines are written in the programming languages listed
in Table 15. The routines are dependent on the platform which runs FastExport.

Note: Although it is neither certified nor supported, INMOD and OUTMOD routines can be
written in COBOL on network-attached client systems if the Micro Focus COBOL for UNIX
compiler is used.

Programming Structure

Programming structures for INMOD, OUTMOD, and notify exit routines differ, as reflected
in the following sections.

INMOD Routines

Table 16 lists the programming language structures for communicating between FastExport
and an INMOD routine.

Table 15: Languages Supported by Platform and Type of User-Developed Routine

Platform INMOD Routines OUTMOD Routines Notify Exit Routines

z/VM, z/OS Assembler, COBOL, PL/I,
SAS/C

Assembler, COBOL, SAS/C SAS/C

UNIX, Windows C C C
50 Teradata FastExport Reference

Chapter 2: Using FastExport
Using INMOD, OUTMOD, and Notify Exit Routines
In each structure, the records must be constructed so that the left-to-right order of the data
field corresponds to the order of the field names specified in the FastExport LAYOUT and
subsequent FIELD and FILLER commands.

OUTMOD Routines

The structure for communicating between FastExport and an OUTMOD routine uses the
standard C calling conventions for the following parameters:

Table 16: Programming Structure for INMOD Routines

 INMOD Routine Language Programming Structure

Assembler First parameter:
RRECORD DSECT
RTNCODE DS F
RLENGTH DS F
RBODY DS CL32004
Second parameter:
IPARM DSECT
RSEQ DS F
PLEN DS H
PBODY DS CL100

C First parameter:
struct {

long Status;
long RecordLength;
char buffer[32004];

}
Second parameter:
struct {

long seqnum;
short parmlen;
char parm[80];

}

COBOL First parameter:
01 INMOD-RECORD.

03 RETURN-CODE PIC S9(9) COMP.
03 RECORD-LENGTH PIC 9(9) COMP.
03 RECORD-BODY PIC X(32004)

Second parameter:
01 PARM-STRUCT.

03 SEQ-NUM PIC 9(9) COMP.
03 PARM-LEN PIC 9(4) COMP.
03 PARM-BODY PIC X(80).

PL/I First parameter:
DCL 1 PARMLIST,

10 STATUS FIXED BINARY(31,0)
10 RLENGTH FIXED BINARY(31,0)
10 REC CHAR(32004)

Second parameter:
DCL 1 PARMLIST,

10 SEQNUM FIXED BINARY(31,0)
10 PLENGTH FIXED BINARY(15,0)
10 PBODY CHAR(80)
Teradata FastExport Reference 51

Chapter 2: Using FastExport
Using INMOD, OUTMOD, and Notify Exit Routines
• int *code;

• int * stmtnum;

• int *InLen;

• char * InBuf;

• int *OutLen;

• char *OutBuf;

Notify Exit Routines

The structure for communicating between FastExport and a notify exit routine is a pointer to
an FXNotifyExitParm structure, as shown in “Sample Notify Exit Routine” on page 172.

Routine Entry Points

Table 17 shows the entry points for INMOD, OUTMOD, and notify exit routines.

Working with Multiple Routines

For each export task associated with a SELECT statement, the FastExport job can specify:

• One INMOD routine with the IMPORT command

• One OUTMOD routine with the EXPORT command

• One notify exit routine with the BEGIN EXPORT command

A FastExport job can specify multiple export tasks, and each one can specify an INMOD
routine, an OUTMOD routine, and a notify exit routine. (These specifications can be to the
same or different routines.)

Compiling and Linking Routines

The methods for compiling and linking routines vary with the operating system. The
following sections describe the methods for z/VM, z/OS, UNIX, and Windows.

For sample programs and procedures that compile and link INMOD, OUTMOD, and notify
exit routines for the operating system environment, see Appendix C: “INMOD, OUTMOD
and Notify Exit Routine Examples.”

Table 17: Entry Points for INMOD, OUTMOD, and Notify Exit Routines

Routine Language Entry Point

SAS/C on z/OS and z/VM platforms, _dynamn

C on UNIX and Windows platforms, _dynamn (or BLKEXIT*)

*Only for FDL-compatible INMODs compiled and
linked with BLKEXIT as the entry point. When the
FDL-compatible INMOD is used,
’USING("FDLINMOD")’ must be specified in the
.IMPORT statement.

COBOL and PL/I, DYNAMN
52 Teradata FastExport Reference

Chapter 2: Using FastExport
Using INMOD, OUTMOD, and Notify Exit Routines
z/VM

On channel-attached z/VM client systems, routines must be compiled and passed to CLINK
with the following options:

• CLINK <filename>

• LKED

• LIBE

• DYNAMC

• NAME <modulename>

The resulting module, which can be loaded by SAS/C at run time, is placed in a load library
called DYNAMC LOADLIB. (The first name must be DYNAMC because this is the only place
that SAS/C looks for user load modules.)

Multiple load modules can exist in the local library as long as each module has a unique name.

z/OS

The procedure on z/OS platforms is similar to the procedure on z/VM platforms, with one
exception: user load modules can be located anywhere, as long as the location is identified by
one of the DDNAME STEPLIB specifications in the JCL.

UNIX

On network-attached UNIX client systems, INMOD, OUTMOD, and notify exit routines
must:

• Be compiled with the MetaWare High C compiler

• Be linked into a shared object module

• Use an entry point named _dynamn

Windows

On network-attached Windows client systems, INMOD, OUTMOD, and notify exit routines
must:

• Be written in C

• Have a dynamn entry point that is a __declspec

• Be saved as a dynamic link library (DLL) file

Addressing Mode on z/VM and z/OS Systems

On FastExport 07.00.00 and later, use either 31-bit or 24-bit addressing for INMOD,
OUTMOD, and notify exit routines on channel-attached systems.

The 31-bit mode provides access to more memory, which enhances performance for
FastExport jobs with a large number of sessions.

Use the following linkage parameters to specify the addressing mode when building INMOD,
OUTMOD, and notify exit routines for z/VM and z/OS systems:

• For 31-bit addressing:

AMODE(31) RMODE(24)
Teradata FastExport Reference 53

Chapter 2: Using FastExport
Using INMOD, OUTMOD, and Notify Exit Routines
• For 24-bit addressing:

AMODE(24) RMODE(24)

FastExport/INMOD Routine Interface

FastExport exchanges information with an INMOD routine by using the conventional
parameter register to point to a parameter list of two 32-bit addresses.

The first 32-bit address points to a three-value INMOD interface parameter list consisting of
status code, length, and body values. The second 32-bit address of the FastExport/INMOD
interface points to a data structure containing sequence number and parameter list fields.

The following sections describe both sets of address pointers.

Status Code

The status code pointer is a 32-bit signed binary value that carries information in both
directions. Table 18 explains the eight status code values of the FastExport-to-INMOD
interface.

Table 18: FastExport-to-INMOD Status Codes

Value Description

0 FastExport is calling for the first time and expects the INMOD routine to return a record. At
this point, the INMOD routine should perform its initialization tasks before sending a data
record to FastExport.

1 FastExport is calling, not for the first time, and expects the INMOD routine to return a
record.

2 The client system has been restarted and the INMOD routine should reposition to the last
checkpoint. FastExport is not expecting the INMOD routine to return a record.

This is a one-time call, and FastExport does not issue a subsequent call with a status code
value of zero.

Note: If the client system restarts before the first checkpoint, entry code 1 is sent to
reinitialize the job.

3 A checkpoint has been written and the INMOD routine should save the checkpoint position.
FastExport does not expect the INMOD routine to return a record.

4 The Teradata Database has failed and the INMOD routine should reposition to the last
checkpoint.

FastLoad is not expecting the INMOD routine to return a record.

This is a one-time call, and FastExport does not issue a subsequent call with a status code
value of zero.

If the database restarts before the first checkpoint, entry code 2 is sent for cleanup, and entry
code 1 is sent to re-initialize the job.

5 The FastExport job has ended and the INMOD routine should perform any required cleanup
tasks.

Note: This condition applies only to network-attached client systems.
54 Teradata FastExport Reference

Chapter 2: Using FastExport
Using INMOD, OUTMOD, and Notify Exit Routines
Table 19 reflects the INMOD-to-FastExport interface status code values (two).

Length

Length is a 32-bit signed binary value that specifies the length, in bytes, of the data record. The
maximum record length is 62K, or 63,488 bytes.

The INMOD routine can use a Length value of zero to indicate an end-of-file condition.

Body

Body is the area where the INMOD routine places the data record.

Sequence Number

The sequence number field contains a 4-byte integer, which is the integer record counter
portion of the source sequence number.

Parameter List

The parameter list field consists of:

• VARCHAR specification

• Two-byte length specification, m

• The m-byte parms string, as parsed and presented by FastExport

Caution: To prevent data corruption, INMOD routines that cannot comply with these protocols should
terminate if they encounter a restart code 2, 3, or 4. To support proper FastExport restart
operations, INMOD routines must save and restore checkpoint information as described here.
If the INMOD saves checkpoint information in some other manner, a subsequent restart/
recovery operation could result in data loss or corruption.

6 The INMOD routine should initialize and prepare to receive a record from FastExport.

7 The INMOD routine should receive a record from FastExport.

Table 19: INMOD-to-FastExport Interface Status Codes

Status Code Indication

0 The INMOD routine:

• is returning a record as the Body value in response to a read call

• has successfully completed a nonread call

Any nonzero value The INMOD routine has encountered:

• the end-of-file condition in response to a read call

• a processing error in response to a nonread call

Table 18: FastExport-to-INMOD Status Codes (continued)

Value Description
Teradata FastExport Reference 55

Chapter 2: Using FastExport
Using INMOD, OUTMOD, and Notify Exit Routines
FastExport/OUTMOD Routine Interface

FastExport exchanges information with an OUTMOD routine by using the conventional
parameter register to point to a six-value OUTMOD interface parameter list as described in
the following sections.

Entry Code

Entry code is one of six values that defines the reason for the call. Table 20 describes the entry
code values in 4-byte integer format. The values can be set as described in the table.

Statement Number

Statement number specifies the relative statement number of the referenced SELECT
statement—the first SELECT statement of the FastExport job being statement number 1.

This value is always 1 if the job has only one SELECT statement. The statement number is in
4-byte integer format.

Table 20: FastExport-to-OUTMOD Interface Entry Codes

Code Specifies

1 Initial Entry—Specifies the initial entry call that Fast Export makes before sending the
first SELECT statement to the Teradata Database.

2 End of Response Entry—Specifies the end of response call that Fast Export makes after
receiving the last row of export data from the Teradata Database.

3 Response Row Entry—Specifies a response row call that FastExport makes for each row of
export data from the Teradata Database.

4 Checkpoint Entry—Specifies a checkpoint call that FastExport makes after processing the
last response row for each SELECT statement.

This call signifies that the OUTMOD routine should capture checkpoint data to support a
restart operation if the Teradata Database or client system fails.

5 Teradata Database Restart Entry—Specifies the first call that resumes processing after a
Teradata Database restart.

If FastExport was writing to an output file when the Teradata Database failed, then the
utility repositions that file before calling the OUTMOD routine. This call signifies that the
OUTMOD routine should also reposition its data or files as needed and execute
checkpoint procedures to resume processing.

If the database restarts before the first checkpoint, entry code 2 is sent for cleanup, and
entry code 1 is sent to re-initialize the job.

6 Client Restart Entry—Specifies the first call that resumes processing after a client system
restart.

If FastExport was writing to an output file when the client system failed, then the utility
repositions that file before calling the OUTMOD routine. This call signifies that the
OUTMOD routine should also reposition its data or files as needed and execute
checkpoint procedures to resume processing.

If the client system restarts before the first checkpoint, entry code 1 is sent to re-initialize
the job.
56 Teradata FastExport Reference

Chapter 2: Using FastExport
Using INMOD, OUTMOD, and Notify Exit Routines
Input Data Length

Input data length specifies the length of the row data, in bytes, for a response row call.

If the OUTMOD routine requires FastExport to write the current response row data to the
output file, then the OUTMOD routine should reset this value to 0 before returning to the
utility.

The input data length is in 4-byte integer format.

Input Data Record

Input data record specifies the buffer of the actual response row data from the Teradata
Database.

Output Data Length

Output data length specifies the length of the output data record. On entry to the OUTMOD
routine, this parameter has a zero value and the output data record parameter points to an
empty buffer. If the OUTMOD routine modifies an input data record, and the new length is:

• Less than or equal to the input length, the response row can be modified in place. In this
case, the OUTMOD routine should set the input data length buffer to the new value before
returning to FastExport.

• Greater than the input length, the output response row must be generated in the output
data buffer. In this case, the OUTMOD routine should set the output data length buffer to
the new value and reset the input data length buffer to zero before returning to FastExport.

The output data length is in 4-byte integer format.

Caution: To prevent data corruption, OUTMOD routines that cannot comply with these protocols
should terminate if they encounter a restart code 4, 5, or 6. To support proper FastExport
restart operations, OUTMOD routines must save and restore checkpoint information as
described here. If the OUTMOD saves checkpoint information in some other manner, a
subsequent restart/recovery operation could result in data loss or corruption.

FastExport/Notify Exit Routine Interface

FastExport accumulates operational information about specific events that occur during a
FastExport job. If the BEGIN EXPORT command includes a NOTIFY option with an EXIT
specification, then, when the specific events occur, FastExport calls the named notify exit
routine and passes to it:

• An event code to identify the event

• Specific information about the event

Table 21 lists the event codes and descriptions of the data that FastExport passes to the notify
exit routine for each event. (For a description of the events associated with each level of
notification, see the description of the NOTIFY option in “BEGIN EXPORT” on page 67.)

Note: To support future enhancements, always ensure that notify exit routines ignore invalid
or undefined event codes, and that they do not cause FastExport to terminate abnormally.
Teradata FastExport Reference 57

Chapter 2: Using FastExport
Using INMOD, OUTMOD, and Notify Exit Routines
Table 21: Events Passed to the Notify Exit Routine

Event
Code Event Event Description Data Passed to the Notify Exit Routine

0 Initialize Successful processing of the NOTIFY
option of the BEGIN EXPORT
command

• Version ID length—4-byte unsigned integer

• Version ID string—32-character (maximum) array

• Utility ID—4-byte unsigned integer

• Utility name length—4-byte unsigned integer

• Utility name string—32-character (maximum) array

• User name length—4-byte unsigned integer

• User name string—64-character (maximum) array

• Optional string length—4-byte unsigned integer

• Optional string—80-character (maximum) array

1 File or INMOD
open

Successful processing of the IMPORT
command that specifies the file or
INMOD routine name

• File name length—4-byte unsigned integer

• File name—256-character (maximum) array

• Import number—4-byte unsigned integer

9 Teradata
Database restart

FastExport received a crash message
from the Teradata Database or from
the CLIv2

No data accompanies the Teradata Database restart event
code

10 CLIv2 error FastExport received a CLIv2 error Error code—4-byte unsigned integer

11 Teradata
Database error

FastExport received a Teradata
Database error that will produce an
exit code of 12

Error code—4-byte unsigned integer

Note: Not all Teradata Database errors cause this event.
For example, an Error 3807 that occurs while trying to
drop or create a table does not terminate FastExport.

12 Exit FastExport is terminating Exit code—4-byte unsigned integer

31 Export begin FastExport is about to begin the
export task by opening the export file

No data accompanies the export begin event code

32 Request submit
begin

FastExport is about to submit the
SELECT request to the Teradata
Database

• Request length—4-byte unsigned integer

• Request text—32,000-character (maximum) array

33 Request submit
end

FastExport has received the response
to the SELECT request

• Statement count—4-byte unsigned integer

• Block count—4-byte unsigned integer

34 Request fetch
begin

FastExport is about to fetch the
results of the SELECT request

No data accompanies the request fetch begin event code

35 File or
OUTMOD
open

FastExport is about to open an
output or OUTMOD routine file

• File name length—4-byte unsigned integer

• File name—256-character (maximum) array

36 Statement fetch
begin

FastExport is about to fetch the
current statement in a request

• Statement number—4-byte unsigned integer

• Block count—4-byte unsigned integer

37 Statement fetch
end

FastExport has fetched all of the
records for the current statement

Record count—4-byte unsigned integer
58 Teradata FastExport Reference

Chapter 2: Using FastExport
Writing a FastExport Job Script
Writing a FastExport Job Script

This section describes the contents of a FastExport job script and explains how to write one.

Definition

A FastExport job script, or program, is a set of FastExport commands and Teradata SQL
statements that select and export data from the Teradata Database.

Each FastExport job includes a number of support commands that establish and maintain the
FastExport support environment, and a number of task commands that perform the actual
database select and export operations.

To write a FastExport job script

A complete FastExport job includes:

• Invoking FastExport

• Logging on to the Teradata Database and establishing the FastExport support environment

• Specifying the FastExport tasks

• Logging off from the Teradata Database and terminating FastExport

1 Invoke FastExport, specifying desired run-time options:

• Normal or abbreviated (brief) printout

• Character set

• Session limits

• Alternate error message file

• Standard input file/device

• Standard output file/device

• Alternate run file

2 Establish the FastExport support environment as indicated in Table 22.

38 Request fetch
end

FastExport has fetched all of the
records for the current request

• Records exported—4-byte unsigned integer

• Records rejected—4-byte unsigned integer

39 Export end FastExport has completed the export
operation and displayed the number
of exported records

• Records exported—4-byte unsigned integer

• Records rejected—4-byte unsigned integer

Table 21: Events Passed to the Notify Exit Routine (continued)

Event
Code Event Event Description Data Passed to the Notify Exit Routine
Teradata FastExport Reference 59

Chapter 2: Using FastExport
Writing a FastExport Job Script
At a minimum, this portion of the FastExport job must include:

• A LOGTABLE command to specify the restart log table

• A LOGON command to provide a logon string that is used to connect all Teradata SQL
and FastExport sessions with the Teradata Database

State these commands in any order, but both commands must appear before any task
commands in the FastExport job script.

3 Specify the FastExport task as indicated in Table 23.

Table 22: Commands for Establishing FastExport Support Environment

Command Description

LOGTABLE Specify the restart log table that maintains checkpoint information for
the FastExport job.

DATEFORM Specify the form of the DATE data type specifications for the
FastExport job.

LOGON Establish a session with the Teradata Database.

RUN FILE Transfer processing control to an alternate run file.

ROUTE MESSAGES Specify an alternate destination for FastExport output messages.

SYSTEM Submit an operating system command to the client system.

Teradata SQL statements Submit a supported Teradata SQL statement to the Teradata Database.

Table 23: Commands for Specifying the FastExport Task

Command Description

BEGIN EXPORT Signify the beginning of an export task specification.

LAYOUT Specify, in conjunction with immediately following FIELD and
FILLER commands, the layout of the input data records on the client
system. (The layout specification will be referenced in a subsequent
IMPORT command.)

FIELD Specify a field of the input record to be used to supply values for
variables in the SELECT statement.

FILLER Describe a field of the input data record that is not referenced, but used
only to indicate the relative position of the following FIELD data.

EXPORT Specify the destination file and format specifications for export data
retrieved from the Teradata Database.

IMPORT Specify the client file that provides the USING values for the SELECT
statement.

SELECT Specify the row data to be exported from the Teradata Database.

END EXPORT Signify the end of the FastExport task and initiate the task processing.
60 Teradata FastExport Reference

Chapter 2: Using FastExport
Using Checkpoints in a Single Export Job
At a minimum, this portion of the FastExport job must include:

• A BEGIN EXPORT command

• A select request

• An EXPORT command

• An END EXPORT command

4 To specify another FastExport task:

• Use the support commands listed in Step 2 to modify the FastExport support
environment for the next task

• Use the task commands listed in Step 3 to specify the next task

Repeat these steps for each task in the FastExport job.

5 Use the LOGOFF command to disconnect all active sessions with the Teradata Database
and terminate FastExport on the client system.

Using Checkpoints in a Single Export Job

FastExport has a built-in feature for saving the position information for imported and
exported data sources. This feature is useful with SELECT statements that retrieve a very large
answer set, preventing FastExport from re-exporting data if a system restart occurs.

For example, assume a table of 5,000,000 rows exists, and the following single SELECT
statement will be used to export the data to a file:

.EXPORT OUTFILE DATAFILE;
 SEL * FROM DATA_TABLE;
.END EXPORT;

If a system restart occurs while this statement is processing, the entire export process must
start over from the beginning.

Avoid this type of scenario by breaking the single SELECT statement into multiple statements
using WHERE clauses and storing boundary values in an INFILE.

 Break up the preceding single SELECT statement similar to the following example:

SEL * FROM DATA_TABLE WHERE FIELD1 BETWEEN 1 AND 1000000;
SEL * FROM DATA_TABLE WHERE FIELD1 BETWEEN 1000001 AND 2000000;
SEL * FROM DATA_TABLE WHERE FIELD1 BETWEEN 2000001 AND 3000000;
SEL * FROM DATA_TABLE WHERE FIELD1 BETWEEN 3000001 AND 4000000;
SEL * FROM DATA_TABLE WHERE FIELD1 BETWEEN 4000001 AND 5000000;

Place all boundary values in INFILE as follows:

FIRST FIELD SECOND FIELD

FIRST RECORD 1 1000000
SECOND RECORD 1000001 2000000
THIRD RECORD 2000001 3000000
FOURTH RECORD 3000001 4000000
FIFTH RECORD 4000001 5000000

Teradata FastExport Reference 61

Chapter 2: Using FastExport
Using Checkpoints in a Single Export Job
Then, as FastExport executes the multiple statements in the second example, they are sent one
at a time. In addition, the position for the import and export data sources is saved.

If a system restart occurs while one of the statements is processing, FastExport does not restart
the entire export process from the beginning as it does when a single SELECT statement is
used. Instead, FastExport restarts the export process only from the statement that failed.

The following sample script uses the data from the INFILE for the WHERE clause and creates
the multiple statements shown in the second example.

Note: This script can be used with FastExport running on all operating systems.

 .LOGTABLE LOG_TBL; /* define restart log */

 .LOGON TDPR/username, password; /* DBC logon string */

 .BEGIN EXPORT ; /* specify export function */

 .LAYOUT BOUNDRIES; /* define the input data values */
 .FIELD FROMVALUE * INTEGER; /* for SELECT constraint clause */
 .FIELD TOVALUE * INTEGER;

 .IMPORT INFILE INDATAFILE /* define the file that contains */
 LAYOUT BOUNDRIES; /* the input data values */

 .EXPORT OUTFILE OUTPUTFILE ; /* identify the destination source*/
 /* for exported data */
 SEL * FROM DATA_TABLE /* provide the SQL SELECT */
 /* statement */
 WHERE COLUMN1 BETWEEN /* with values provided by the */
 /* IMPORT command */
 :FROMVALUE AND :TOVALUE ;

 .END EXPORT; /* terminate the export operation */

 .LOGOFF; /* disconnect from the DBS */
62 Teradata FastExport Reference

CHAPTER 3

FastExport Commands

This chapter describes the FastExport commands and Teradata SQL statements which can be
executed from the FastExport utility.

Experienced FastExport users can also refer to the simplified command descriptions in the
FastExport chapter of Teradata Tools and Utilities Command Summary. This book provides
the syntax diagrams and a brief description of the syntax variables for each Teradata client
utility.

Syntax Notes

Each FastExport command must:

• Begin on a new line

• Start with a period (.) character

• End with a semicolon (;) character

Each command can continue for as many lines as necessary, as long as it satisfies the
beginning and ending requirements.

Object Name Restrictions

The following Syntax rules apply to object names:

• A semicolon cannot be used in an object name because a semicolon is used to designate
the end of a Teradata FastExport command.

• 30 bytes cannot be used as the quoted object name length.

• Dictionary (UDD) object names cannot be used.

See Appendix A: “How to Read Syntax Diagrams” for more information about how to read
the syntax diagrams used in this book.

Geospatial Data Restrictions

The following rules apply to Geospatial data:

• FastExport does not support Geospatial data represented by LOBs.

• FastExport does not support geospatial data beyond 64000.
Teradata FastExport Reference 63

Chapter 3: FastExport Commands
ACCEPT
ACCEPT

Purpose
The ACCEPT command sets FastExport utility variables to the value of a specified:

• External data source and valid character fields

• Internal environment variable

The ACCEPT command is a valid command preceding LOGON and LOGTABLE commands.

Syntax

where

Syntax Element Description

charpos1 and
charpos2

Start and end character positions of a field in each input record that contains
extraneous information

For example:

• Use charpos1to ignore only the single specified character

• Use charpos1THRU, to ignore all characters from charpos1 through the end
of the record

• Use THRU charpos2 to ignore all characters from the beginning of the
record through charpos2

• Use charpos1 THRU charpos2 to ignore all characters from charpos1 through
charpos2

env_var Environment variable that provides the value for the specified utility variables
(var)

.ACCEPT var

2409A024

IGNORE

;

THRU

charpos2

charpos1

THRU

,

A

FROM

FILE fileid

A

ENVIRONMENT

ENV VAR

VARIABLE env_var B

B

64 Teradata FastExport Reference

Chapter 3: FastExport Commands
ACCEPT
Usage Notes

Table 24 describes the things to consider when using the ACCEPT command.

fileid Data source of the external system

The external system DD (or similar) statement specifies a file:

• In z/OS, fileid is a DDNAME. (See the “z/OS fileid Usage Rules” topic in the
“Usage Notes” subsection.)

• In UNIX and Windows, fileid is the path name for a file. If the path name
has embedded white space characters, they must enclose the entire path
name in single or double quotes.

• In z/VM, fileid is a FILEDEF name

var Name of the FastExport utility variable that is to be set with the value accepted
from the designated source

Character string values appear as quoted strings in the data file.

Syntax Element Description

Table 24: ACCEPT Command Usage Notes

Topic Usage Notes

Specifying the
System Console/
Standard Input
Device

The asterisk (*) character can be used as the fileid specification for the system
console/standard input (stdin) device.

The system console is the:

• Keyboard in interactive mode

• Standard input device in batch mode

For more information about the keyboard and standard input devices, see “File
Requirements” on page 21.

z/OS fileid Usage
Rules

If a DDNAME is specified, FastExport reads data records from the specified
source.

A DDNAME must obey the same construction rules as Teradata SQL column
names, except that:

• The “at” character (@) is allowed as an alphabetic character

• The underscore character (_) is not allowed

The DDNAME must obey the applicable rules of the external system. If the
DDNAME represents a data source on magnetic tape, the tape may be either
labeled or unlabeled, as supported by the operating system.

Source File Record
Restriction

A single record, row, or input line is accepted from the designated source.
Always make sure that there is only one record in the file from which the
ACCEPT command is getting the variables.

Coding Multiple
Variables

When multiple variables are coded, each is sequentially assigned input text up
to the first space character encountered that is not within a quoted string.
Teradata FastExport Reference 65

Chapter 3: FastExport Commands
ACCEPT
Delimiting Input
Text

Input text for numeric values must be delimited only by space characters or
record boundaries.

Input text for character strings must be enclosed in apostrophes. For example,
the data record provided to satisfy the following ACCEPT command should
include two fields:

.Accept age, name from file info;

The following example shows two sample data records, where the first is
correct but the second is not:

32 ’Tom’
32 Tom

Number of
Variables

When the number of variables listed is greater than the number of responses
available, unused variables remain undefined (null). If there are not enough
variables to hold all responses, FastExport issues a warning message.

Table 24: ACCEPT Command Usage Notes (continued)

Topic Usage Notes
66 Teradata FastExport Reference

Chapter 3: FastExport Commands
BEGIN EXPORT
BEGIN EXPORT

Purpose
The BEGIN EXPORT command signifies the beginning of an export task and sets the
specifications for the task sessions with the Teradata Database.

Syntax

.BEGIN EXPORT ;

2410E012

SESSIONS max

TENACITY hours

SLEEP minutes

NOTIFY OFF

LOW nameEXIT

MSG

QUEUE

option

MEDIUM nameEXIT

MSG

HIGH

* min
*

TEXT

TEXT

'string'

'string'

'string'

'string'

DATAENCRYPTION

ON

OFF

DECIMALDIGITS integer

NOSTOP
Teradata FastExport Reference 67

Chapter 3: FastExport Commands
BEGIN EXPORT
where

Syntax Element Description

SESSIONS… Maximum number of FastExport sessions that is logged on when a
LOGON command is entered and, optionally, the minimum number of
sessions required to run the job

• The max value specifies the maximum number of sessions to log on.
The max specification must be greater than zero. If a SESSIONS max
value is specified that is larger than the number of available AMPs,
FastExport limits the sessions to one per working AMP. The default
maximum, if the SESSIONS option is not used, is 4.

• The min value specifies the minimum number of sessions required
for the job to continue. The min specification must be greater than
zero. The default minimum, if the SESSIONS option is not used or a
min value is specified, is 1.

• The * value specifies the maximum and minimum number of
sessions. Using the asterisk character as the max specification logs on
for the maximum number of sessions—one for each AMP. Using the
asterisk character as the min specification logs on for at least one
session, but always less than or equal to the max specification.

For more information about setting number of sessions, see “Usage
Notes” on page 72.

TENACITY hours Number of hours that FastExport tries to log on to the Teradata
Database

When FastExport tries to log on for a new task, and the Teradata
Database indicates that the maximum number of utility import/export
sessions are already running, FastExport:

1 Waits for six minutes, by default, or for the amount of time specified
by the SLEEP option.

2 Then it tries to log on to the Teradata Database again.

FastExport repeats this process until it has either logged on for the
required number of sessions or exceeded the TENACITY hours time
period.

The default value is 4.

For more information about the maximum number of load utility tasks
that can run, see “Concurrent Load Utility Tasks” on page 48.

SLEEP minutes Number of minutes that FastExport waits between logon attempts

Default value is 6.

FastExport uses the SLEEP specification in conjunction with the
TENACITY specification.
68 Teradata FastExport Reference

Chapter 3: FastExport Commands
BEGIN EXPORT
NOTIFY… FastExport implementation of the notify user exit option:

• NOTIFY OFF suppresses the notify user exit option.

• NOTIFY LOW enables the notify user exit option for those events
signified by “Yes” in the Low Notification Level column of Table 25.

• NOTIFY MEDIUM enables the notify user exit option for those
events signified by “Yes” in the Medium Notification Level column
of Table 25.

• NOTIFY HIGH enables the notify user exit option for those events
signified by “Yes” in the High Notification Level column of Table 25.

EXIT name User-defined exit where name is the name of a user-supplied library
with a member name of _dynamn

The exit must be written in C, or in a programming language with a
run-time environment that is compatible with C.

For an example, see “Sample Notify Exit Routine” on page 172.

Note: On some versions of UNIX, ./ prefix characters may have to be
added to the EXIT name specification if the module is in the current
directory.

TEXT 'string' A user-supplied string of up to 80 characters that FastExport passes to
the named user exit routine

The string specification must be enclosed in single quote characters (').

MSG 'string' A user-supplied string of up to 16 characters that FastExport logs on to:

• The operator’s console (channel-attached z/VM and z/OS client
systems)

• The system log (network-attached UNIX and Windows client
systems)

The string specification must be enclosed in single quote characters (').

Syntax Element Description
Teradata FastExport Reference 69

Chapter 3: FastExport Commands
BEGIN EXPORT
QUEUE option Queue management option on channel-attached z/OS client systems

Note: This option is available only on z/OS, and only for tasks with a
low notification specification.

This option invokes an ENQ when the BEGIN EXPORT command is
processed, followed by a DEQ when the significant event occurs.

The option specification is one of the following:

RNAME

A parameter containing a quoted string of up to 255 characters.

The default is TDUSER.

SCOPE

A parameter that is one of the following:

JOB—Specifies that the QUEUE is local to the job, including all job
steps.

SYSTEM—Specifies that the QUEUE is global to the computer running
it.

SYSTEMS—Specifies that the QUEUE is global to all computers in the
complex.

The default is SYSTEMS.

NOBLOCK

A parameter specifying that if the ENQ blocks for any reason, it must
return an error instead. This is a fatal error for the job.

The default, an implied BLOCK (there is no BLOCK keyword), means
that the ENQ will wait for the QUEUE.

DATAENCRYPTION Keyword that enables data encryption for the FastExport job

Valid options are:

• ON = All the requests between BEGIN EXPORT and END EXPORT
commands will be encrypted.

• OFF = The requests between BEGIN EXPORT and END EXPORT
commands will not be encrypted. This is the default.

This option will apply only to the requests between BEGIN EXPORT
and END EXPORT commands.

Using this option overwrites the data encryption settings specified by
both the run-time parameters and in the fexpcfg.dat configuration file.

DECIMALDIGITS A user-supplied maximum number of digits in the DECIMAL data type
that can be exported. Starting from V2R6.2, the maximum number of
digits in the DECIMAL data type increased from 18 to 38. Note that if a
user doesn’t set the limit, the default maximum number of digits is 18.

When the client is a mainframe, the user can set the limit to 31 to
request automatic CAST to avoid n>31 results.

Using this option overwrites the max_decimal_returned value specified
in the clispb.dat file for network-attached systems or the HSHSPB
parameter for channel-attached systems.

Syntax Element Description
70 Teradata FastExport Reference

Chapter 3: FastExport Commands
BEGIN EXPORT
Table 25 lists the events which create notifications.

NOSTOP If the NOSTOP option is specified and Teradata or CLIv2 does not
support Large Decimal, if the user specifies a valid value for the
decimaldigits parameter, FastExport does the following:

• Displays a message that Teradata Database or Teradata CLIv2 does
not support Large Decimal

• Displays a warning that the decimaldigits setting is ignored

• Continues with the Teradata FastExport job

• Exits with an exit code of 4, unless there is another error with a
higher exit code

If the NOSTOP option is not specified and Teradata or CLIv2 does not
support Large Decimal, if the user specifies a valid value for the
decimaldigits parameter, FastExport maintains the current behavior
and does the following:

• Displays a message that Teradata Database or Teradata CLIv2 does
not support Large Decimal

• Terminates the FastExport job

• Exits with an exit code of 8

Note: If the user specifies a valid value for the max_decimal_returned
parameter in clispb.dat, FastExport maintains the current behavior,
regardless of NOSTOP option.

Table 25: Events That Create Notifications

Event

Notification Level

SignifiesLow Medium High

Initialize Yes Yes Yes Successful processing of the BEGIN
EXPORT command

File or INMOD open No No Yes Successful processing of the IMPORT
command

Teradata Database
Restart

No Yes Yes A crash error from the Teradata Database or
the CLIv2

CLIv2 error Yes Yes Yes A CLIv2 error

Teradata Database
error

Yes Yes Yes A Teradata Database error that terminates
FastLoad

Exit Yes Yes Yes FastExport is terminating

Export begin No Yes Yes Opening the export file

Request submit begin No Yes Yes Submitting the SELECT request

Request submit end No Yes Yes Received SELECT request response

Syntax Element Description
Teradata FastExport Reference 71

Chapter 3: FastExport Commands
BEGIN EXPORT
Usage Notes

Table 26 describes the things to consider when using the BEGIN EXPORT command.

Request fetch begin No Yes Yes Fetching SELECT request results

File or OUTMOD
open

No No Yes Opening output file or OUTMOD

Statement fetch begin No No Yes Fetching current statement

Statement fetch end No No Yes Last record fetched for current statement

Request fetch end No Yes Yes Last record fetched for current request

Export end No Yes Yes Export task completed

Table 25: Events That Create Notifications (continued)

Event

Notification Level

SignifiesLow Medium High

Table 26: BEGIN EXPORT Usage Notes

Topic Usage Notes

Command Placement
and Frequency

The BEGIN EXPORT command must be the first command in a
group of FastExport utility commands that specify an export task.

 Multiple BEGIN EXPORT commands can be used in a FastExport job
script, but each export task specification must begin with a BEGIN
EXPORT command and end with an END EXPORT command.
72 Teradata FastExport Reference

Chapter 3: FastExport Commands
BEGIN EXPORT
Sessions Limit
Specification

The number of sessions that you should specify depends on the connections
to the Teradata Database and the amount of data to be returned.

In addition to the sessions that are used for the export task, FastExport uses
two additional sessions to:

• Maintain the restart log table

• Submit Teradata SQL statements

There is no general method to determine the optimal number of sessions,
because it is dependent on several factors, including, but not limited, to:

• Teradata Database performance and workload

• Client platform type, performance, and workload

• Channel performance, for channel-attached systems

• Network topology and performance, for network-attached systems

• Volume of data to be processed by the application

When specifying the session limit, always consider the load that the export
task is placing on the channel or network connection.

For example, four sessions on a channel-attached system, each on a
different interface processor (IFP) on a channel, and all concurrently
returning data can saturate a single channel.

In such a case, define the maximum number of sessions as four times the
number of channels that are controlled by the Teradata Director Program
(TDP) that connects the sessions.

Using too few sessions is likely to unnecessarily limit throughput. On the
other hand, using too many sessions can increase session management
overhead (and also reduce the number of sessions available to any other
applications) and may, in some circumstances, degrade throughput.

If the minimum number of FastExport sessions are not logged, FastExport
will terminate.

Regardless of the size of the Teradata Database configuration, for large
repetitive production applications, it will usually be appropriate to
experiment with several different session configurations to determine the
best trade-off between resource utilization and throughput performance.

For larger Teradata Database configurations, it is appropriate to establish
an installation default for the maximum number of sessions that is greater
than four sessions, but less than one session per AMP. This can be done
using an installation configuration file (see “FastExport Configuration File”
on page 34) or a standard run-time parameter (see “Run-time Parameters”
on page 23).

An installation default for number of sessions, if specified in the
configuration file, can be overridden in individual FastExport job scripts,
when necessary.

On large to very large Teradata Database configurations, the limit of one
session per AMP when * is specified may be inappropriately large.

Table 26: BEGIN EXPORT Usage Notes (continued)

Topic Usage Notes
Teradata FastExport Reference 73

Chapter 3: FastExport Commands
DATEFORM
DATEFORM

Purpose
The DATEFORM command specifies the form of the DATE data type specifications for the
FastExport job.

Syntax

where

Usage Notes

Table 27 describes the things to consider when using the DATEFORM command.

Syntax Element Description

ANSIDATE Keyword that specifies ANSI fixed-length CHAR(10) DATE data types for
the FastExport job

INTEGERDATE Keyword that specifies integer DATE data types for the FastExport job

This is the default specification for FastExport jobs if a DATEFORM
command is not entered.

.DATEFORM INTEGERDATE

ANSIDATE

;

2409A025

Table 27: DATEFORM Command Usage Notes

Topic Usage Notes

Command
Frequency and
Placement

 Only one DATEFORM command can be used.

 The command must be entered before the LOGON command.

Data Type
Conversions

When the ANSIDATE specification is used, ANSI/SQL DateTime data types
must be converted to fixed-length CHAR data types when specifying the
column/field names in the FIELD command.

For each DATE, TIME, TIMESTAMP, and INTERVAL data type specification,
see the “Usage Notes” subsection of the FIELD command description for a
description of the fixed-length CHAR representations.
74 Teradata FastExport Reference

Chapter 3: FastExport Commands
DISPLAY
DISPLAY

Purpose
The DISPLAY command writes messages to a specified destination.

Syntax

where

Usage Notes

Table 28 describes the things to consider when using the DISPLAY command.

Syntax Element Description

’text’ Text to be written to the specified output destination

fileid Data source of the external system

The external system DD (or similar) statement specifies a file:

• In z/OS, fileid is a DDName. (See the “z/OS fileid Usage Rules”
topic in the “Usage Notes” subsection.)

• In UNIX and Windows, fileid is the path name for a file

• In z/VM, fileid is a FILEDEF name

2409A027

.DISPLAY

TO

;'text' FILE fileid

Table 28: DISPLAY Command Usage Notes

Topic Usage Notes

Conflicting Write
Operations on Network-
attached Systems

On network-attached client systems, if the same file is specified to
redirect stdout as the file in a DISPLAY command, the results may be
incomplete due to conflicting write operations to the same file.

Displaying Apostrophes in
the Text String

To display an apostrophe within the text string, use two consecutive
apostrophes (single quotes) to distinguish it from both the single
quotes enclosing the string and a regular double-quote character.
Teradata FastExport Reference 75

Chapter 3: FastExport Commands
DISPLAY
Specifying the System
Console/Standard Output
Device

 The asterisk (*) character can be used as the fileid specification to
direct the display messages to the system console/standard output
(stdout) device.

The system console is the:

• Display screen in interactive mode

• Standard output device in batch mode

For more information about the display screen and standard output
devices, see “File Requirements” on page 21.

Utility Variables Utility variables are replaced by their values before text is displayed.
This is done by preceding the variable name with an ampersand (&)
character.

To display the name of a utility variable, code two ampersand
characters instead of one.

z/OS fileid Usage Rules A DDNAME must obey the same construction rules as Teradata SQL
column names except that:

• The "at" character (@) is allowed as an alphabetic character.

• The underscore character (_) is not allowed.

The DDNAME must obey the applicable rules of the external system.

If the DDNAME represents a data source on magnetic tape, the tape
may be either labeled or nonlabeled, as supported by the operating
system.

Table 28: DISPLAY Command Usage Notes (continued)

Topic Usage Notes
76 Teradata FastExport Reference

Chapter 3: FastExport Commands
END EXPORT
END EXPORT

Purpose
The END EXPORT command signifies the end of an export task and initiates processing by
the Teradata Database.

Syntax

Usage Notes

Table 29 describes the things to consider when using the END EXPORT command.

.END EXPORT

2410A016

;

Table 29: END EXPORT Command Usage Notes

Topic Usage Notes

Command
Placement and
Frequency

The END EXPORT command must be the last command in a group of
FastExport utility commands that specify an export task.

 Multiple END EXPORT commands can be used in a FastExport job script,
but each export task specification that begins with a BEGIN EXPORT
command must end with an END EXPORT command.

Command
Processing

In response to the END EXPORT command, the FastExport utility sends a
SELECT statement to the Teradata Database that:

• Places the resource locks on the Teradata Database tables

• Prepares the export data for return to the client system
Teradata FastExport Reference 77

Chapter 3: FastExport Commands
EXPORT
EXPORT

Purpose
The EXPORT command provides the client system destination and file format specifications
for the export data retrieved from the Teradata Database and, optionally, generates a
MultiLoad script file that can be used to reload the export data.

Syntax

where

Syntax Element Description

OUTFILE fileid Data destination file on the client system.

The client system DD or equivalent statement specifies a file:

• In UNIX and Windows, the fileid is the path name for a file.

If the path name has embedded white space characters, the entire path
name must be enclosed in single or double quotes.

• In z/VM, the fileid is a FILEDEF name.

• In z/OS, the fileid is a DDNAME. (See the “z/OS fileid Usage Rules” topic
in the “Usage Notes” subsection.)

2410B007

;C

BLOCKSIZE integer

FORMAT FASTLOAD

BINARY

TEXT

UNFORMAT

MODE INDICATOR

RECORD

OUTLIMIT records

C
modulenameOUTMOD

.EXPORT A

'init-string'

AXSMOD

OUTFILE fileid

name

B

A

B

MLSCRIPT fileid
78 Teradata FastExport Reference

Chapter 3: FastExport Commands
EXPORT
AXSMOD name Name of an access module file that exports data to a file

To specify the OLE DB Access Module, useoledb_axsmod.dll on Windows
platforms.

The shared library file name may be selected if a custom access module exists.

Note: Large File Access Module is no longer available because the Data
Connector API supports file sizes greater than 2 GB on Windows, HP-UX,
IBM-AIX, and Solaris SPARC platforms.

The AXSMOD option is not required for exporting to:

• Disk files on either network-attached or channel-attached client systems

• Magnetic tape files on channel-attached client systems

It is required for exporting to magnetic tape and other types of files on
network-attached systems.

For more information about specific Teradata access modules, see Teradata
Tools and Utilities Access Module Reference.

’init-string’ [Optional] initialization string for the access module

OUTMOD
modulename

[Optional] user-written routine for processing the export data.

In z/OS, modulename is the name of a load module. On UNIX and Windows
platforms, it is the path name of the OUTMOD executable code file.

FastExport provides six parameters to the named procedure, as described in
“FastExport/OUTMOD Routine Interface” on page 56.

Note: On some versions of UNIX, ./ prefix characters may have to be added
to the OUTMOD modulename specification if the module is in the current
directory.

MODE… Format mode of the export data returned to the client system:

• INDICATOR

• RECORD

The default, if a MODE option is not specified, is INDICATOR mode.

Note: FastExport does not support field mode. To export field mode data,
use the appropriate format clauses in the SELECT statements to enable the
Teradata Database to convert response data to character format.

Syntax Element Description
Teradata FastExport Reference 79

Chapter 3: FastExport Commands
EXPORT
FORMAT… Record format of the export file on network-attached systems where:

• FASTLOAD specifies that each record is a two-byte integer, n, followed by
n bytes of data, followed by an end-of-record marker, either X'0A' or
X'0D'.

• BINARY specifies that each record is a two-byte integer, n, followed by n
bytes of data.

• TEXT specifies that each record is an arbitrary number of bytes, followed
by an end-of-record marker, which is a:

• Line feed (X'0A') on UNIX platforms

• Carriage-return/line feed pair (X'0D0A') on Windows platforms

• UNFORMAT specifies that each record is exported as it is received from
CLIv2 without any client modifications.

Note: The FORMAT options apply only to UNIX and Windows platforms.

The default, if a FORMAT option is not specified, is FASTLOAD.

BLOCKSIZE integer Maximum block size that should be used when returning data to the client

The default block size is 64K bytes, which is the maximum supported by the
Teradata Database.

Note: The BLOCKSIZE specification for a FastExport EXPORT command
cannot be larger than the row size supported by the Teradata Database.

OUTLIMIT records Maximum number of response records that should be written to the output
client file

When this number is reached, the utility writes the following message to the
print output file and stops processing response data:

Output limit of n exceeded.

MLSCRIPT fileid Destination file of the generated MultiLoad script file

When the MLSCRIPT option is specified, FastExport generates a MultiLoad
script file that can later be used to reload the export data back into the
Teradata Database.

The client system DD or equivalent statement specifies a file:

• In UNIX and Windows, the fileid is the pathname for a file

• In z/VM, the fileid is a FILEDEF name

• In z/OS, z/OS is a DDNAME. (See the “z/OS fileid Usage Rules” topic in
the “Usage Notes” subsection.)

By default, if the MLSCRIPT option is not specified, then the FastExport
utility does not generate a MultiLoad script file.

Note: If the specified fileid already exists, it will be overwritten.

Syntax Element Description
80 Teradata FastExport Reference

Chapter 3: FastExport Commands
EXPORT
Usage Notes

Table 30 describes the things to consider when using the EXPORT command.

Table 30: EXPORT Command Usage Notes

Topic Usage Notes

Access Module Release Level
Compatibility

Release 07.03.00 of FastExport software is not compatible with
access modules prepared for release 07.00.00 and earlier.

Attributes of the Destination File On channel-attached client systems, the attributes of the
destination file must be compatible with the export data records
that will be written there. (Compatibility is not a problem on
network-attached UNIX and Windows client systems.)

On channel-attached z/OS and z/VM systems, the attributes
vary, depending on:

• Disposition of the file—If the execution of the FastExport
utility is a restart operation, then the disposition of the
destination file should be OLD

• Response mode—For all response modes, the attributes can
specify any RECFM. However, RECFM=FB (fixed blocked) or
RECFM=VB (variable blocked) are commonly used.

• Record length and block size—These must accommodate the
specified format as shown in Table 31

The Teradata Database data types in the channel-attached z/VM
and z/OS environments are described in Table 32. Use this
information to calculate the size of the exported data rows to
assign appropriate values to the attributes of the destination file.

Block Size Specification Two 64K-byte buffers are allocated for each session being used to
transmit data from the Teradata Database to the client system.

The minimum block size that must be allocated is one which will
hold the largest possible parcel returned by the Teradata
Database.

If the specified block size is not large enough to hold the largest
possible parcel, the Teradata Database returns an error to the
SELECT statement and the utility is abnormally terminated.

For a complete description of the parcel sizes, see:

• Teradata Call-Level Interface Version 2 Reference for Channel-
Attached Systems

• Teradata Call-Level Interface Version 2 Reference for Network-
Attached Systems

Command Placement and
Frequency

One EXPORT command is required for each export task in a
FastExport job script. Place it anywhere between the BEGIN
EXPORT command and the END EXPORT command that
specify the export task.
Teradata FastExport Reference 81

Chapter 3: FastExport Commands
EXPORT
Table 31 describes the Record Length and Block Size Specification.

MODE Specifications Both the INDICATOR and RECORD mode specifications return
data in a client internal format with variable-length records:

• Each record has a value for all of the columns specified by the
SELECT statement

• Variable-length columns are preceded by a two-byte control
value indicating the length of the column data

• Null columns have a value that is appropriate for the column
data type

Data records returned in indicator mode, however, have a set of
bit flags that identify the columns that have a null value.

 For a complete description of these modes, see:

• Teradata Call-Level Interface Version 2 Reference for Channel-
Attached Systems

• Teradata Call-Level Interface Version 2 Reference for Network-
Attached Systems

Multiple SELECT Statements If the export task specified multiple SELECT statements, the
export data is returned in statement order. All response data for
statement 1 is followed by the response data for statement 2, and
so forth.

If the same SELECT statement is executed multiple times, then
the results of the first iteration are returned and processed before
the second iteration of the SELECT statement is sent to the
Teradata Database.

SELECT Statement Processing If the export task specified multiple SELECT statements, the
response data for all statements is returned in statement
order—all response data for statement 1 will be first, followed by
the data for statement 2, and so forth.

If a single SELECT statement is executed multiple times, the
results of the first iteration are returned and processed before the
second SELECT statement is sent to the Teradata Database.

z/OS fileid Usage Rules A DDNAME must obey the same construction rules as Teradata
SQL column names except that:

• The "at" character (@) is allowed as an alphabetic character

• The underscore character (_) is not allowed

The DDNAME must obey the applicable rules of the external
system.

If the DDNAME represents a data source on magnetic tape, the
tape may be either labeled or nonlabeled, as supported by the
operating system.

Table 30: EXPORT Command Usage Notes (continued)

Topic Usage Notes
82 Teradata FastExport Reference

Chapter 3: FastExport Commands
EXPORT
Table 31: Record Length and Block Size Specifications (Channel-Attached Client Systems)

RECFM Description

FB LRECL must be exactly equal to the number of bytes of data being returned.
The LRECL cannot be larger.

For RECFM=FB, the BLKSIZE must also be a multiple of the LRECL. If not,
records may be truncated, resulting in possible data integrity problems, or
FastExport may append.

Explicitly adding BLKSIZE to the JCL eliminates the possibility of using an
invalid default BLKSIZE.

VB Logical record length (LRECL) and block size (BLKSIZE) parameters should
be large enough to accommodate the largest record that is anticipated.

VBS or VS Maximum logical record length can exceed the physical length for a given data
set.

Spanned records, either blocked or unblocked, use a well-established
straightforward protocol to break or segment records across blocks where
necessary.

While an individual segment never exceeds the length of a block, the logical
record that it is a part of can span multiple blocks, and even volumes. Thus
spanned records are the only way to create output files with rows whose length
exceed the 32K-byte block size, up to the maximum of 64K bytes that is
supported by the Teradata Database.

Even though the maximum LRECL that can be specified with JCL is 32,760,
there is no practical limit on the actual length of spanned records.

For output consisting of records exceeding this maximum LRECL (greater
than approximately 32K, for example), simply specify LRECL=X. There is no
other special JCL requirement for creating such records when using the VBS or
VS record format.

Always specify the BLKSIZE according to the performance characteristics of
the target device or media. This usually means specifying the largest possible
BLKSIZE.

In some cases, the performance of the FastExport utility may be improved by
specifying RECFM=VBS when:

• The largest row is appreciably smaller than 32K bytes in length

• There is a large variation in row sizes

The spanned/blocked format maximizes data packing. Because fewer blocks
are required to convey the same number of logical records, the FastExport job
runs quicker.
Teradata FastExport Reference 83

Chapter 3: FastExport Commands
EXPORT

Note: A FastExport job will fail with an Error 1776 if rows greater than 32K bytes are exported
using a RECFM= specification other than VBS or VS.

Note also that not all applications can read spanned data records. Always make sure that
applications support spanned records before specifying these formats.

Example: This DD statement requests spanned records for a FastExport EXPORT to fileid
named OUTPUT:

//OUTPUT DD DSN=ASG.FEXP.Z,DISP=(NEW,CATLG),
// DCB=(RECFM=VBS,LRECL=32760,BLKSIZE=32756,DSORG=PS),
// UNIT=SYSDA,SPACE=(CYL,(100,20))

Table 32 contains the Data Type description for default Channel-Attached Client Systems.

For example, assuming a block size of 32,756 bytes:

• Using RECFM=VB, a 20,000-byte record and a 4,000-byte record could be
packed into a newly created block. But, if the next record were 12,000 bytes
long it clearly would exceed the length of the block and would have to be
packed into the following block.

• Using RECFM=VBS, the 12,000-byte record could be segmented such that
the first 8,740 bytes could be packed into the original block and the
remaining 3,260 bytes packed into the subsequent block—taking into
account that there must be one 4-byte Block Descriptor Word (BDW) per
block and one 4-byte Segment Descriptor Word (SDW) per segment; and a
segment must be fully contained within a block

Table 31: Record Length and Block Size Specifications (Channel-Attached Client Systems) (continued)

RECFM Description

Table 32: Data Type Descriptions (Channel-Attached Client Systems)

Data Type Output Length Description

BYTE(n) n bytes n bytes

BYTEINT 1 byte 8-bit signed binary

CHAR(n)

CHARS(n)

CHARACTERS(n)

n bytes n EBCDIC characters

DATE 4 bytes 32-bit integer in the internal date format of the
Teradata Database.

For details, see the Teradata Database Design and SQL
Data Types and Literals reference documentation.

Note: If a DATEFORM command has been used to
specify ANSIDATE as the DATE data type, the
FastExport utility internally converts each DATE data
type to a CHAR(10) field.
84 Teradata FastExport Reference

Chapter 3: FastExport Commands
EXPORT

Refer to SQL Data Types and Literals for more information.

Example 1 Using the OUTFILE and FORMAT Specifications

The following example specifies that the exported records to be loaded are written to /home/
fexpuser/tests/out1 and that the format of each record is unformat:

.EXPORT OUTFILE /home/fexpuser/tests/out1
FORMAT UNFORMAT ;

DECIMALx

DECIMAL(x)

DECIMAL(x,y)

(x+1) / 2 bytes x packed decimaldigits and sign

FLOAT

FLOATING

8 bytes 64-bit (double-precision) floating point

GEOSPATIAL DATA maximum 64000 FastExport does not support Geospatial data
represented by LOBs.

INTEGER 4 bytes 32-bit signed binary

LONG VARCHAR m+2 characters
where m<=n

Same as VARCHAR (32000) characters

Fixed Length Period Data Types:

PERIOD(DATE)

PERIOD(TIME(n))

PERIOD(TIME(n) WITH TIME ZONE)

max=8 byte

max=12 bytes

max=16 bytes

The precision specified must be 0<n<6:
precision=0 (n/a)

precision=n

precision=n

For details, see the Teradata Database Design and SQL
Data Types and Literals reference documentation.

Variable Length Period Data Types:

PERIOD(TIMESTAMP(n))

PERIOD(TIMESTAMP(n) WITH TIME
ZONE)

max=20 bytes

max=24 bytes

The precision specified must be 0<n<6:

precision=n

precision=n

For details, see the Teradata Database Design and SQL
Data Types and Literals reference documentation.

SMALLINT 2 bytes 16-bit signed binary

VARBYTE(n) m+2 bytes where
m<=n

16-bit integer, count m, followed by m bytes of data

VARCHAR(n) m+2 bytes where
m<=n

16-bit integer, count m, followed by m EBCDIC
characters

Table 32: Data Type Descriptions (Channel-Attached Client Systems) (continued)

Data Type Output Length Description
Teradata FastExport Reference 85

Chapter 3: FastExport Commands
EXPORT
Example 2 Specifying an OUTMOD Routine

The following example for a UNIX client system runs an OUTMOD routine that has been
compiled and linked as feomod.so:

.EXPORT OUTMOD ./feomod.so;

The following example for a Windows client system runs the same OUTMOD routine that
has been compiled and linked as feomod.dll:

.EXPORT OUTMOD ./feomod.dll;
86 Teradata FastExport Reference

Chapter 3: FastExport Commands
FIELD
FIELD

Purpose
The FIELD command specifies a field of the input record that provides data values for the
constraint parameters of the SELECT statement. Each field defined by a FIELD command is
sent to the Teradata Database as part of the data record containing data values defined by a
USING modifier for the SELECT statement.

Syntax

where

Syntax Element Description

fieldname1 Name of an input record field that is referenced by a variable parameter name
in the WHERE condition of the SELECT statement

startpos Starting position of the field in an input data record

startpos can be specified as an:

• Unsigned integer, which is a character position starting with 1

• Asterisk (*), which means the next available character position beyond the
preceding field

Note: When using the CONTINUEIF condition of the LAYOUT command to
continue input records, a startpos specified by an integer value refers to a
character position in the final concatenated record from which the
continuation indicator has been removed.

datadesc Type and length of data in the field

This description is used to generate the data description for this field in the
USING modifier for the SELECT statement.

The datadesc specification can be any of the data type phrases shown in the SQL
Data Types and Literals reference documentation.

.FIELD

fieldexpr
fieldname1

2410A013

A

A ;

startpos datadesc

NULLIF nullexpr

DROP

TRAILING

LEADING BLANKS

NULLS

AND
2

Teradata FastExport Reference 87

Chapter 3: FastExport Commands
FIELD
Usage Notes

Table 33 describes the things to consider when using the FIELD command.

fieldexpr Concatenation of two or more items, either fields or character constants or
string constants or a combination of these in the following form:

fieldname2 || fieldname2 || fieldname2 ...

Nested concatenations are not supported. Each fieldname2 that is actually a
field by its own FIELD command must be defined.

Valid character and string constants are as described in the Teradata SQL
Fundamentals documentation.

NULLIF nullexpr Condition used for selectively inserting a null value into the affected column

The condition is specified as a conditional expression involving any number of
fields, each represented by its fieldname and constants.

Each fieldname appearing in the conditional expression must be defined by
either:

• The startpos and datadesc parameters of the FIELD command

• A FILLER command

DROP… Character positions to be dropped from the fieldname1

These must be of a character data type.

Syntax Element Description

Table 33: FIELD Command Usage Notes

Topic Usage Notes

Command
Placement and
Frequency

A FIELD command must be preceded by a LAYOUT command.

One or more FIELD commands, or a combination of FIELD command and
FILLER command, define the composition of the input data record to supply
values for the USING modifier of the SELECT statement.

Specifying
DECIMAL Data
Types

The following input length and field descriptions apply for the DECIMAL
data type specifications which make in the datadesc parameter.

DECIMAL (x) and DECIMAL (x,y)

• Length: 1, 2, 4, 8, or 16 bytes (network); packed decimal (mainframe)

• Description: 128-bit double precision floating point

For more information on the DECIMAL data type, see SQL Data Types and
Literals.
88 Teradata FastExport Reference

Chapter 3: FastExport Commands
FIELD
Table 34 describes the ANSI/SQL Date Time Specifications.

Specifying Period
Data Types

A period is an anchored duration. It represents a set of contiguous time
granules within that duration. A period is implemented using a Period data
type. Each period consists of two elements:

• BEGIN (the beginning element)

• END (the ending element)

The element type is one of the following DateTime data types.

• PERIOD(DATE)

• PERIOD(TIME[(n)])

• PERIOD(TIME[(n)] WITH TIME ZONE)

• PERIOD(TIMESTAMP[(n)])

• PERIOD(TIMESTAMP[(n)] WITH TIME ZONE)

For more information on the PERIOD data type, see the SQL Data Types and
Literals book.

Using ANSI/SQL
DateTime Data
Types

When the DATEFORM command is used to specify ANSIDATE as the DATE
data type, FastExport internally converts each DATE field to a CHAR(10)
field. All ANSI/SQL DateTime TIME, TIMESTAMP, and INTERVAL data
types must be converted to fixed-length CHAR data types to specify column/
field names in a FastExport FIELD command.

Table 34 provides the conversion specifications and format examples for each
ANSI/SQL DateTime specification.

Table 34: ANSI/SQL DateTime Specifications

DATE

Convert to: CHAR(10)

Format:
Example:

yyyy/mm/dd
1998/01/01

TIME
TIME (n)

Where n is the number of digits after the decimal point, 0 through 6. (Default = 6.)

Convert to: CHAR(8 + n + (1 if n > 0, otherwise 0))

Format (n = 0):
Example:

hh:mm:ss
11:37:58

Format: (n = 4):
Example:

hh:mm:ss.ssss
11:37:58.1234

TIMESTAMP
TIMESTAMP (n)

Table 33: FIELD Command Usage Notes (continued)

Topic Usage Notes
Teradata FastExport Reference 89

Chapter 3: FastExport Commands
FIELD
Where n is the number of digits after the decimal point, 0 through 6. (Default = 6.)

Convert to: CHAR(19 + n + (1 if n > 0, otherwise 0))

Format (n = 0):
Example:

yyyy-mm-dd hh:mm:ss
1998-09-04 11:37:58

Format (n = 4):
Example:

yyyy-mm-dd hh:mm:ss.ssss
1998-09-04 11:37:58.1234

TIME WITH TIME ZONE
TIME (n) WITH TIME ZONE

Where n is the number of digits after the decimal point, 0 through 6. (Default = 6.)

Convert to: CHAR(14 + n + (1 if n > 0, otherwise 0))

Format (n = 0):
Example:

hh:mm:ss{±}hh:mm
11:37:58-08:00

Format (n = 4):
Example:

hh:mm:ss.ssss {±} hh:mm
11:37:58.1234-08:00

TIMESTAMP WITH TIME ZONE
TIMESTAMP (n) WITH TIME ZONE

Where n is the number of digits after the decimal point, 0 through 6. (Default = 6.)

Convert to: CHAR(25 + n + (1 if n > 0, otherwise 0))

Format (n = 0):
Example

yyyy-mm-dd hh:mm:ss{±}hh:mm
1998-09-24 11:37:58+07:00

Format (n = 4):
Example:

yyyy-mm-dd hh:mm:ss.ssss{±}hh:mm
1998-09-24 11:37:58.1234+07:00

INTERVAL YEAR
INTERVAL YEAR (n)

Where n is the number of digits, 1 through 4. (Default = 2.)

Convert to: CHAR(n)

Format (n = 2):
Example:

yy
98

Format (n = 4):
Example:

yyyy
1998

INTERVAL YEAR TO MONTH
INTERVAL YEAR (n) TO MONTH

Where n is the number of digits, 1 through 4. (Default = 2.)

Convert to: CHAR(n + 3)

Format (n = 2):
Example:

yy-mm
98-12

Table 34: ANSI/SQL DateTime Specifications (continued)
90 Teradata FastExport Reference

Chapter 3: FastExport Commands
FIELD
Format (n = 4):
Example:

yyyy-mm
1998-12

INTERVAL MONTH
INTERVAL MONTH (n)

Where n is the number of digits, 1 through 4. (Default = 2.)

Convert to: CHAR(n)

Format (n = 2):
Example:

mm
12

Format (n = 4):
Example:

mmmm
0012

INTERVAL DAY
INTERVAL DAY (n)

Where n is the number of digits, 1 through 4. (Default = 2.)

Convert to: CHAR(n)

Format (n = 2):
Example:

dd
31

Format (n = 4):
Example:

dddd
0031

INTERVAL DAY TO HOUR
INTERVAL DAY (n) TO HOUR

Where n is the number of digits, 1 through 4. (Default = 2.)

Convert to: CHAR(n + 3)

Format (n = 2):
Example:

dd hh
31 12

Format (n = 4):
Example:

dddd hh
0031 12

INTERVAL DAY TO MINUTE
INTERVAL DAY (n) TO MINUTE

Where n is the number of digits, 1 through 4. (Default = 2.)

Convert to: CHAR(n + 6)

Format (n = 2):
Example:

dd hh:mm
31 12:59

Format (n = 4):
Example:

dddd hh:mm
0031 12:59

Table 34: ANSI/SQL DateTime Specifications (continued)
Teradata FastExport Reference 91

Chapter 3: FastExport Commands
FIELD
INTERVAL DAY TO SECOND
INTERVAL DAY (n) TO SECOND
INTERVAL DAY TO SECOND (m)
INTERVAL DAY (n) TO SECOND (m)

Where

• n is the number of digits, 1 through 4. (Default = 2.)

• m is the number of digits after the decimal point, 0 through 6. (Default = 6.)

Convert to: CHAR(n + 9 + m + (1 if m > 0, 0 otherwise))

Format (n = 2, m = 0):
Example:

dd hh:mm:ss
31 12:59:59

Format (n = 4, m = 4):
Example:

dddd hh:mm:ss.ssss
0031 12:59:59:59.1234

INTERVAL HOUR
INTERVAL HOUR (n)

Where n is the number of digits, 1 through 4. (Default = 2.)

Convert to: CHAR(n)

Format (n = 2):
Example:

hh
12

Format (n = 4):
Example:

hhhh
0012

INTERVAL HOUR TO MINUTE
INTERVAL HOUR (n) TO MINUTE

Where n is the number of digits, 1 through 4. (Default = 2.)

Convert to: CHAR(n + 3)

Format (n = 2):
Example:

hh:mm
12:59

Format (n = 4):
Example:

hhhh:mm
0012:59

INTERVAL HOUR TO SECOND
INTERVAL HOUR (n) TO SECOND
INTERVAL HOUR TO SECOND (m)
INTERVAL HOUR (n) TO SECOND (m)

Where

• n is the number of digits, 1 through 4. (Default = 2.)

• m is the number of digits after the decimal point, 0 through 6. (Default = 6.)

Convert to: CHAR(n + 6 + m + (1 if m > 0, 0 otherwise))

Format (n = 2, m = 0):
Example:

hh:mm:ss
12:59:59

Table 34: ANSI/SQL DateTime Specifications (continued)
92 Teradata FastExport Reference

Chapter 3: FastExport Commands
FIELD
Format (n = 4, m = 4):
Example:

hhhh:mm:ss.ssss
0012:59:59.1234

INTERVAL MINUTE
INTERVAL MINUTE (n)

Where n is the number of digits, 1 through 4. (Default = 2.)

Convert to: CHAR(n)

Format (n = 2):
Example:

mm
59

Format (n = 4):
Example:

mmmm
0059

INTERVAL MINUTE TO SECOND
INTERVAL MINUTE (n) TO SECOND
INTERVAL MINUTE TO SECOND (m)
INTERVAL MINUTE (n) TO SECOND (m)

Where

• n is the number of digits, 1 through 4. (Default = 2.)

• m is the number of digits after the decimal point, 0 through 6. (Default = 6.)

Convert to: CHAR(n + 3 + m + (1 if m > 0, 0 otherwise))

Format (n = 2, m = 0):
Example:

mm:ss
59:59

Format (n = 4, m = 4):
Example:

mmmm:ss.ssss
0059:59.1234

INTERVAL SECOND
INTERVAL SECOND (n)
INTERVAL SECOND (n,m)

Where

• n is the number of digits, 1 through 4. (Default = 2.)

• m is the number of digits after the decimal point, 0 through 6. (Default = 6.)

Convert to: CHAR(n + m + (1 if m > 0, 0 otherwise))

Format (n = 2, m = 0):
Example:

ss
59

Format (n = 4, m = 4):
Example:

ssss.ssss
0059.1234

Table 34: ANSI/SQL DateTime Specifications (continued)
Teradata FastExport Reference 93

Chapter 3: FastExport Commands
FILLER
FILLER

Purpose
The FILLER command specifies a field that is not sent to the Teradata Database as part of the
input record that provides data values for the constraint parameters of the SELECT statement.

Syntax

where

Usage Notes

Table 35 describes the things to consider when using the FILLER command.

Syntax Element Description

fieldname Optional name for the input record field

The fieldname specification is required only if the field is referred to by the
nullexpr condition of a FIELD command.

startpos Starting position of the specified field in an input data record

startpos can be specified as an:

• Unsigned integer, which is the character position starting with 1

• Asterisk (*), which means the next available character position beyond the
preceding field

Note: When using the CONTINUEIF condition of the LAYOUT command
to continue input records, a startpos specified by an integer value refers to a
character position in the final concatenated record from which the
continuation indicator has been removed.

datadesc Type and length of data in the field

The datadesc specification can be any of the data type phrases shown in the
Teradata Utilities reference documentation.

This description is used to generate the data description for this field in the
USING modifier for the SELECT statement.

.FILLER

fieldname

2409A030

;startpos datadesc
94 Teradata FastExport Reference

Chapter 3: FastExport Commands
FILLER
Table 35: FILLER Command Usage Notes

Topic Usage Notes

Command
Placement and
Frequency

A FILLER command must be preceded by a LAYOUT command.

One or more FILLER commands, or a combination of FILLER commands
and FIELD commands, define the composition of the input data record to
supply values for the USING modifier of the SELECT statement.
Teradata FastExport Reference 95

Chapter 3: FastExport Commands
IF, ELSE, and ENDIF
IF, ELSE, and ENDIF

Purpose
The IF, ELSE, and ENDIF commands provide conditional control of execution processes.

Syntax

Usage Notes

Table 36 describes the things to consider when using the IF, ELSE, and ENDIF commands.

.IF

THEN

;conditional expression

2409A031

statements to execute if true

.ENDIF ;

A

BA

D

C statements to execute if false

D

.ELSE CB ;

D

Table 36: IF, ELSE and END IF Command Usage Notes

Topic Usage Notes

ELSE Clause Use the optional ELSE clause to execute commands when the condition
is evaluated as false.

Nesting IF Commands FastExport supports the nesting of IF commands to a level of 100.

Numeric Results of the
Conditional Expression

The conditional expression is an expression that can be evaluated as either
true or false.

When evaluation of the expression returns a numeric result:

• Zero is interpreted as false

• Nonzero results are interpreted as true

Variables in the IF
Expression

The conditional expression can be either user-defined variables or
predefined system variables.
96 Teradata FastExport Reference

Chapter 3: FastExport Commands
IF, ELSE, and ENDIF
Example 1

FastExport is case sensitive when comparing &SYS system variables. In this example, the RUN
FILE command does not execute because the substituted values returned are all capitals:

0003 .IF ’&SYSDAY’ = ’Fri’ THEN;
14:10:28 - FRI MAY 09, 1993
UTY2402 Previous statement modified to:
0004 .IF ’FRI’ = ’Fri’ THEN;
0005.RUN FILE UTNTS38;
0006 .ENDIF;

Always consider this factor when creating a script to force the execution of a predetermined
sequence of events. If ‘FRI’ is substituted in line 0003, the compare would work and the RUN
FILE command would execute.

Example 2

In the following example, the user has created the table named &TABLE and a variable named
CREATERC, into which is set the system return code resulting from the execution of the
CREATE TABLE statement: .SET CREATERC TO &SYSRC;

.SET CREATERC TO &SYSRC;

.IF &CREATERC = 3803 /* Table &TABLE exists */ THEN;

.RUN FILE RUN01;

.ELSE;

.IF &CREATERC <> 0 THEN;

.LOGOFF &CREATRC;

.ENDIF;

.ENDIF:

If the table name has not already been used, and the return code is not zero, the return code
evaluates to an error condition and the job logs off with the error code displayed.

Variable Substitutions Any ELSE or ENDIF commands must be present in their entirety and
cannot be composed simply of variables in need of substitution.

Commands and statements following an IF, ELSE, or ENDIF structure
that are not executed are not parsed and do not have their variables
substituted.

Table 36: IF, ELSE and END IF Command Usage Notes (continued)

Topic Usage Notes
Teradata FastExport Reference 97

Chapter 3: FastExport Commands
IMPORT
IMPORT

Purpose
The IMPORT command defines the client file that provides the USING data values for the
FastExport SELECT statement.

Syntax

The IMPORT command syntax depends on whether the FastExport utility is running on a
channel-attached or network-attached client system. Several of the syntax elements are
common to both configurations, while others are specific to each.

For Channel-Attached Client Systems

C

C
FROM m

FREE

HOLD

USING (parms)

FOR n

THRU k

LAYOUT layoutname ;

D

modulenameINMOD

.IMPORT A

'init-string'

AXSMOD

INFILE ddname

name

B

A

B

D E
FORMAT VARTEXT

DISPLAY ERRORS

NOSTOP

'c'

E

2410C006
98 Teradata FastExport Reference

Chapter 3: FastExport Commands
IMPORT
For Network-Attached Client Systems

where

Syntax Element Description

INFILE fileid Input file on the client system

The client system DD or equivalent statement specifies a file:

• In UNIX and Windows, the fileid is the path name for a file

If the path name has embedded white space characters, the path name
must be enclosed in single or double quotes.

• In z/VM, the fileid is a FILEDEF name

• In z/OS, the fileid is a a DDNAME. (See the “z/OS fileid Usage Rules”
topic in the “Usage Notes” subsection.)

C

FORMAT

BINARY

TEXT

FASTLOAD

UNFORMAT

C

USING (parms)

modulenameINMOD

.IMPORT A

'init-string'
AXSMOD

INFILE fileid

name

B

A

B

'c '

DISPLAY ERRORS

NOSTOP

2410A014

D ;LAYOUT layoutname

D

VARTEXT
Teradata FastExport Reference 99

Chapter 3: FastExport Commands
IMPORT
AXSMOD name Name of the access module file to be used to import data, where the Named
Pipes Access Module is:

• np_axsmod.sl on HP-UX platforms

• np_axsmod.so on MP-RAS; IBM-AIX; Solaris SPARC and Solaris Opteron
platforms

• np_axsmod.dll on Windows platforms

A shared library file name can be used if a custom access module exists.

Note: Large File Access Module is no longer available because the Data
Connector API supports file sizes greater than 2 gigabytes on Windows,
HP-UX, IBM-AIX, and Solaris SPARC platforms.

The AXSMOD option is not required for importing from:

• Disk files on either network-attached or channel-attached client systems

• Magnetic tape files on channel-attached client systems

It is required for importing from magnetic tape and other types of files on
network-attached client systems.

For more information about specific Teradata access modules, see Teradata
Tools and Utilities Access Module Reference.

init-string Optional initialization string for the access module

INMOD
modulename

Optional user-written routine for preprocessing the input data

In z/OS, modulename is the name of a load module. On UNIX and Windows
client systems, it is the pathname for the INMOD executable code file.

When both the INFILE fileid and the INMOD modulename parameters are
specified, FastExport reads the input file and passes the data to the INMOD
routine for preprocessing.

If the INFILE fileid parameter is not specified, FastExport expects the
INMOD routine to provide the input data record.

FastExport provides two parameters to the named routine, as described in
“FastExport/INMOD Routine Interface” on page 54.

Note: On some versions of UNIX, ./ prefix characters may have to be added
to the INMOD modulename specification if the module is in the current
directory.

Syntax Element Description
100 Teradata FastExport Reference

Chapter 3: FastExport Commands
IMPORT
USING (parms) Character string containing parameters can be passed to the INMOD routine:

• The parms string can include one or more character strings, each
delimited on either end by either an apostrophe or a quotation mark

• The maximum size of the parms string is 1K bytes

• Parentheses within delimited character strings have the same syntactical
significance as alphabetic characters

• Before passing the parms string to the INMOD routine, FastExport
replaces the following with a single blank character:

• Each comment

• Each consecutive sequence of white space characters, such as blank,
tab, and so on, that appears outside of delimited strings

• The entire parms string must be enclosed in parentheses and, on channel-
attached client systems, the parentheses are included in the string passed
to the INMOD routine

Note: The parms string must be FDLINMOD for INMOD routines written
for the prior Pascal version of FastLoad (program FASTMAIN).

FORMAT… Record format of the input file, where:

• FASTLOAD specifies that each record is a two-byte integer, n, followed by
n bytes of data, followed by an end-of-record marker, either X '0A' or
X '0D'

• BINARY specifies that each record is a two-byte integer, n, followed by n
bytes of data

• TEXT specifies that each record is an arbitrary number of bytes followed
by an end-of-record marker, either X '0A' or X '0D'

Note: TEXT format does not support numeric data. Do not specify TEXT
if the MLSCRIPT option of an EXPORT command is also used.

• UNFORMAT specifies that each record is imported as it is received from
CLIv2 without any client modifications

• VARTEXT specifies that each record is in variable-length text record
format, with each field separated by a delimiter character

Note: All above FORMAT options apply to UNIX and Windows platforms.
The VARTEXT option applies to mainframe. The default FORMAT option
for UNIX and Windows platforms is FASTLOAD. The default FORMAT for
mainframe is “use record boundaries “, meaning the input data is read
record-by-record and the LAYOUT is applied to each record.

‘c’ [Optional] Specification of the delimiter character that separates fields in the
variable-length text records of the input data source

The default, if a ‘c’ specification is not used, is the pipe character (|).

DISPLAY ERRORS [Optional] Keyword specification that writes input data records that produce
errors to the standard error file

NOSTOP [Optional] Keyword specification that inhibits the FastExport termination in
response to an error condition associated with a variable-length text record

LAYOUT
layoutname

Identifier of the file layout description, as specified by a prior LAYOUT
command

Syntax Element Description
Teradata FastExport Reference 101

Chapter 3: FastExport Commands
IMPORT
Usage Notes

Table 37 describes the things to consider when using the IMPORT command.

Table 37: IMPORT Command Usage Notes

Topic Usage Notes

Access Module
Release Level
Compatibility

Release 07.03.00 and later of the FastExport utility software is not compatible
with access modules prepared for release 07.00.00 and earlier.

Command
Frequency and
Placement

If the export task uses a LAYOUT command, then an IMPORT command is
required, and it must appear after the LAYOUT command.

Data Type
Specifications

When using the VARTEXT specification, VARCHAR, VARBYTE, and LONG
VARCHAR are the only valid data type specifications which can be used in
the FastExport layout FIELD command and FILLER command.

For additional information on data types, see Table 32 on page 84.

Error Record
Handling

When FastExport encounters an error condition in an input record, it
normally discards the record and terminates. In loading variable-length text
records, either or both of these functions can be inhibited by specifying the
options:

• DISPLAY ERRORS

• NOSTOP

By specifying both options and redirecting STDERR to a file location instead
of the terminal screen, the FastExport job will run to completion and save all
the error records. Then it can be manually modify and loaded.

Input Record
Requirements

The total number of fields in each input record must be equal to or greater
than the number of fields described in the FastExport layout FIELD
command and FILLER command.

If it is less, FastExport generates an error message. If it is more, the Teradata
Database ignores the extra fields.

The last field of a record does not have to end with a delimiter character. It
can end with a delimiter character, but it is not required.

Multiple Physical
Records

If the FastExport task reads the input file and constructs a logical record from
multiple physical records, this is performed before the physical record is
passed to the INMOD routine. The INMOD routine is invoked only one time
for the generation of each USING record.

Null Fields Two consecutive delimiter characters direct FastExport to null the field
corresponding to the one right after the first delimiter character.

Also, if the last character in a record is a delimiter character, and there is at
least one more field to be processed, then FastExport nulls the field
corresponding to the next one to be processed, as defined in the layout FIELD
command and FILLER command.
102 Teradata FastExport Reference

Chapter 3: FastExport Commands
IMPORT
Example 1 Using the INFILE and FORMAT Specifications

This example specifies that the using data for the SELECT statement is contained in /home/
fexpuser/tests/data1 and that the format of each record is binary.

.IMPORT INFILE /home/fexpuser/tests/data1
FORMAT BINARY
Layout layl;

Example 2 Specifying an INMOD Routine

The following example for a UNIX client system runs an INMOD routine that has been
compiled and linked as feimod.so:

.IMPORT INMOD ./feimod.so LAYOUT lay1;

The following example for a Windows client system runs the same INMOD routine that has
been compiled and linked as feimod.dll:

.IMPORT INMOD ./feimod.dll LAYOUT lay1;

VARTEXT Records When VARTEXT is specified, FastExport assumes that the input data is
variable-length text fields separated by a field-delimiter character. The utility
parses each input data record on a field-by-field basis, and creates a
VARCHAR field for each input text field.

z/OS fileid Usage
Rules

A DDNAME must obey the same construction rules as Teradata SQL column
names except that:

• The “at” character (@) is allowed as an alphabetic character

• The underscore character (_) is not allowed

The DDNAME must obey the applicable rules of the external system.

If the DDNAME represents a data source on magnetic tape, the tape may be
either labeled or nonlabeled, as supported by the operating system.

Table 37: IMPORT Command Usage Notes (continued)

Topic Usage Notes
Teradata FastExport Reference 103

Chapter 3: FastExport Commands
LAYOUT
LAYOUT

Purpose
The LAYOUT command, used with an immediately following sequence of FIELD and FILLER
commands, specifies the layout of the file that provides data values for the USING modifier of
the SELECT statement.

Syntax

where

Syntax Element Description

layoutname Name assigned to the layout for reference by one or more subsequent
IMPORT commands

A layoutname must obey the same construction rules as Teradata SQL column
names.

.LAYOUT ;

2410A011

CONTINUEIF condition

layoutname

INDICATORS
104 Teradata FastExport Reference

Chapter 3: FastExport Commands
LAYOUT
Usage Notes

Table 38 describes the things to consider when using the LAYOUT command.

CONTINUEIF
condition

Conditional phrase in which condition is of the form:

position = value

where:

• position is an unsigned integer (never an asterisk) that specifies the starting
character position of the field of every input record that contains the
continuation indicator

• value is the continuation indicator specified as a character constant or a
string constant. FastExport uses the length of the constant as the length of
the continuation indicator field.

Note: The condition specified as position = value is case sensitive—always
specify the correct character case for this parameter.

If the conditional phrase is true, then FastExport forms a single record by
concatenating the next input record at the end of the current record. (The
current record is the one most recently obtained from the external data
source.)

If the conditional phrase is false, then FastExport uses the current input record
either by itself or as the last of a sequence of concatenated records.

Note: Regardless of whether the condition evaluates to true or false,
FastExport removes the tested string (the continuation indicator field) from
each record.

INDICATORS Condition that the input records defined by this LAYOUT command are in
indicator mode

That is, the first n bytes of each record are indicator bytes, where n is the
rounded up integer quotient of the number of fields defined by the LAYOUT
command, divided by 8.

If this option is specified, the following FIELD commands must accurately
define each field of the input record. The number of the defined fields and
fillers is used to calculate the number of bytes of indicator data that are in each
input record.

Syntax Element Description

Table 38: LAYOUT Command Usage Notes

Topic Usage Notes

Command
Frequency and
Placement

A LAYOUT command specification must be referenced by each IMPORT
command in the FastExport job script. In all cases, the LAYOUT command
must be presented before an IMPORT command that references it. Each
LAYOUT command must be immediately followed by a series of FIELD and
FILLER commands that define the composition of a logical record.
Teradata FastExport Reference 105

Chapter 3: FastExport Commands
LAYOUT
Using the same
LAYOUT command
in Multiple
FastExport Tasks

The same layoutname specification can be referenced in more than one
FastExport task, provided that:

• Each task is delimited by BEGIN EXPORT and END EXPORT commands

• The LAYOUT command appears before any IMPORT command that
references it

Table 38: LAYOUT Command Usage Notes (continued)

Topic Usage Notes
106 Teradata FastExport Reference

Chapter 3: FastExport Commands
LOGDATA
LOGDATA

Purpose
Supplies parameters to the LOGMECH command beyond those needed by the logon
mechanism, such as user ID and password, to successfully authenticate the user. The
LOGDATA command is optional. Whether or not parameters are supplied and the values and
types of parameters depend on the selected logon method.

LOGDATA is only available on network-based platforms.

Syntax

where

Usage Notes

For more information about logon security, see Security Administration.

Example

If used, the LOGDATA and LOGMECH commands must precede the LOGON command.
The commands themselves may occur in any order.

The following example demonstrates using the LOGDATA, LOGMECH, and LOGON
commands in combination to specify the Kerberos logon authentication method and
associated parameters:

.logmech KRB5

.logdata joe@domain1@@mypassword

.logon cs4400s3

Syntax Element Description

logdata_string
‘logdata_string’

Parameters required for the logon mechanism specified using “LOGMECH”
on page 108

For information about the logon parameters for supported mechanisms, see
the Security Administration guide.

The string is limited to 64 KB and must be in the session character set. To
specify a string containing white space or other special characters, enclose the
data string in single quotes.

2409A054

.LOGDATA ;logdata_string

'logdata_string '
Teradata FastExport Reference 107

Chapter 3: FastExport Commands
LOGMECH
LOGMECH

Purpose
Identifies the appropriate logon mechanism by name. If the mechanism specified requires
parameters other than user ID and password for authentication, the LOGDATA command
provides these parameters. The LOGMECH command is optional and available only on
network-attached systems.

Syntax

where

Usage Notes

Every session to be connected requires a mechanism name. If none is supplied, a default
mechanism can be used instead, as defined on either the server or client system in an
XML-based configuration file.

For more information about logon security, see Security Administration.

Example

If used, the LOGDATA and LOGMECH commands must precede the LOGON command.
The commands themselves may occur in any order.

The following example demonstrates using the LOGDATA, LOGMECH, and LOGON
commands in combination to specify the Windows logon authentication method and
associated parameters:

.logmech NTLM

.logdata joe@domain1@@mypassword

.logon cs4400s3

Syntax Element Description

logmech_name Defines the logon mechanism.

For a discussion of supported logon mechanisms, see Security Administration

The name is limited to 8 bytes; it is not case-sensitive.

2409A053

.LOGMECH ;logmech_name
108 Teradata FastExport Reference

Chapter 3: FastExport Commands
LOGOFF
LOGOFF

Purpose
The LOGOFF command disconnects all active sessions from the Teradata Database and
terminates FastExport.

Syntax

where

Usage Notes

Table 39 describes the things to consider when using the LOGOFF command.

Syntax Element Description

retcode [Optional] Completion code to be returned to the client operating system

If a retcode is not specified, FastExport returns the appropriate terminating
return code.

2409A033

.LOGOFF

retcode

;

Table 39: LOGOFF Command Usage Notes

Topic Usage Notes

Optional
Completion Code

The optional completion code value, retcode, can be specified as a conditional or
an arithmetic expression, evaluated to a single integer.

The LOGOFF command processes whenever the highest return code reached was
no more than 04 (warning). Any return code other than 00 or 04 terminates the
FastExport job.

If a serious error terminates the program before the LOGOFF command is
processed, the return code output is the value generated by the error condition
rather than the retcode value specified as a LOGOFF command option.
Teradata FastExport Reference 109

Chapter 3: FastExport Commands
LOGOFF
Example

The following example uses a logical expression as the retcode specification:

.LOGOFF &SYSRC > 8

If the expression is true, the retcode is 1. If false, it is 0.

Terminating
Return Codes

When a FastExport job terminates, and an optional retcode value is not specified,
the utility returns a code indicating the way the job completed:

• Code 0—job completed normally

• Code 4—a warning condition occurred. Warning conditions do not terminate
the job.

• Code 8—a user error, such as a syntax error in the FastExport job script,
terminated the job

Note: The following Teradata Database error messages produce a return code
of 08:

3600 3692 3695

• Code 12—a fatal error terminated the job. A fatal error is any error other than
a user error.

• Code 16—no message destination is available

For a complete description of Teradata Database error messages, refer to the
Messages reference documentation.

When Permitted The LOGOFF command is permitted at any point in the input script. It logs off
immediately.

Automatic Logoff FastExport performs an automatic logoff function if:

• All of the export data from the Teradata Database has been processed without
encountering a LOGOFF command

• The program fails because of an error

Table 39: LOGOFF Command Usage Notes (continued)

Topic Usage Notes
110 Teradata FastExport Reference

Chapter 3: FastExport Commands
LOGON
LOGON

Purpose
The LOGON command establishes a Teradata SQL session with the Teradata Database.

The ACCEPT and SET commands are valid commands preceding LOGON and LOGTABLE
commands.

Syntax

Standard LOGON Syntax

Note: On the z/OS or z/VM platform, with the use of the User Logon Exit routine in TDP, the
user name is not required. See Teradata Director Program Reference for more information.

Single Sign-on LOGON Syntax

Note: On the Windows platform, if logon encryption is enabled on the gateway, then single
sign-on is disabled on the client and standard logon syntax should be used instead

where

Syntax Element Description

acctid Account identifier associated with the username

An account identifier can have up to 30 bytes.

If an acctid is not specified, FastExport uses the default identifier defined
when the user was created.

password Password associated with the username

A password can have up to 30 bytes.

2409A034

.LOGON

tdpid /

;username

, password
,'acctid '

2410A005

.LOGON

tdpid /

;

username , password
,'acctid '
Teradata FastExport Reference 111

Chapter 3: FastExport Commands
LOGON
Note: The period preceding the LOGON command is optional.

Usage Notes

Table 40 describes the things to consider when using the LOGON command.

tdpid Optional character string that identifies the name of a TDP

If the tdpid is not specified, FastExport uses the default TDP established by
the system administrator.

Note: For channel-attached systems, the tdpid string must be in the form:

TDPn

where n is the TDP identifier.

username User identifier of up to 30 bytes

Syntax Element Description

Table 40: LOGON Command Usage Notes

Topic Usage Notes

Command Frequency and
Placement

A LOGON command is required for each invocation of the FastExport
utility.

One LOGON command is allowed for each invocation of the FastExport
utility, and it must precede any other FastExport commands except
RUN FILE command and LOGTABLE command.
112 Teradata FastExport Reference

Chapter 3: FastExport Commands
LOGON
Example

The following example presents both the LOGON and LOGTABLE commands as they
typically occur:

.logtable logtable001;

.logon tdpx/me,paswd;

Logon Parameters For standard LOGON, the parameters (tdpid, username, password, and
acctid) are used in all sessions established with the Teradata Database.
The LOGON command may occur only once.

For single sign-on LOGON, if the Gateway to Teradata Database is
configured to use single sign-on (SSO), and the Teradata client machine
has already been logged on, the machine name, user name, and
password are not required in the LOGON command. The user name
and password combination specified when the Teradata client machine
was logged on are authenticated via network security for a SSO such that
valid Teradata users will be permitted to log on to the Teradata
Database. The use of SSO is strictly optional, unless the Gateway has
been configured to accept only SSO-style logons.

To connect to a Teradata Database other than the one currently logged
on, the TDPid must be included in the LOGON command. If the TDPid
is not specified, the default contained in clispb.dat will be used. (For
information about setting defaults, see the Teradata Call-Level Interface
Version 2 Reference for Network-Attached Systems book.)

To be interpreted correctly, the TDPid must be followed by the slash
separator (‘/’), to distinguish the TDPid from a Teradata Database
username. For example, to connect to slugger, enter one of the
following:

.LOGON slugger/;

.LOGON slugger/,,'acctinfo';

If an account ID is to be used, the optional account ID must be specified
in the LOGON command.

Using LOGON With the
LOGTABLE Command

Both the LOGON and LOGTABLE commands are required.

LOGON and commands may appear in any order, but must precede
other commands except RUN FILE commands used to identify the file
containing the LOGON command.

If the LOGON command is entered first, FastExport warns that the
LOGTABLE command is also required.

Table 40: LOGON Command Usage Notes (continued)

Topic Usage Notes
Teradata FastExport Reference 113

Chapter 3: FastExport Commands
LOGTABLE
LOGTABLE

Purpose
The LOGTABLE command specifies a restart log table for the FastExport checkpoint
information. FastExport uses the information in the restart log table to restart jobs that are
halted because of a Teradata Database or client system failure.

The ACCEPT and SET commands are valid commands preceding LOGON and LOGTABLE
commands.

Syntax

where

Usage Notes

Table 41 describes the things to consider when using the LOGTABLE command.

Syntax Element Description

dbname Name of the database under which the log table exists

The default is the database name associated with the username specified in the
LOGON command. FastExport searches for or creates the table (tname) in that
database unless another database name is specified in this option.

tname Name of the restart log table

2409A035

.LOGTABLE

dbname.

;tname

Table 41: LOGTABLE Command Usage Notes

Topic Usage Notes

Using
LOGTABLE with
the LOGON
command

Both the LOGTABLE and LOGON commands are required.

LOGTABLE and LOGON commands may appear in any order, but must
precede other commands except RUN commands used to identify the file
containing the LOGON command.

If the LOGON command is entered first, FastExport warns that the LOGTABLE
command is also required.
114 Teradata FastExport Reference

Chapter 3: FastExport Commands
LOGTABLE
Example

The following example presents both the LOGTABLE command and the LOGON command
as they typically occur:

.logtable Mine.Logtable001;

.logon tdpx/me,paswd;

The Restart Log
Table

The table specified as the FastExport restart log table does not have to be fully
qualified.

Note: It is critical that the restart log table not be shared between two or more
FastExport jobs. Each FastExport job must have its own restart log table, to
ensure proper operation. Failure to use a distinct log table for each FastExport
job will cause unexpected results.

Specifying a New
or Existing Table

If a table is specified that does not exist, FastExport creates the table and uses it as
the restart log during this invocation of the utility.

If a table is specified that already exists, then FastExport checks the table to
determine whether the current invocation of the utility is a restart operation.

Maintaining the
Restart Log Table

FastExport automatically maintains the restart log table. If the table is
manipulated in any way, it will invalidate the restart capability.

The only valid user maintenance function is to drop the restart log table—never
delete rows from the table.

Changing the
dbname
Specification

The LOGTABLE dbname option must be used to change the dbname
specification for a FastExport operation. A subsequent Teradata SQL
DATABASE statement, which must appear after the LOGTABLE commands and
LOGON commands, cannot be used to change the dbname specification.

Required Access
Privilege

The following privileges on the database containing the specified restart log table
are required:

• CREATE TABLE

• INSERT

• UPDATE

• SELECT

Table 41: LOGTABLE Command Usage Notes (continued)

Topic Usage Notes
Teradata FastExport Reference 115

Chapter 3: FastExport Commands
ROUTE MESSAGES
ROUTE MESSAGES

Purpose
The ROUTE MESSAGES command identifies an alternate destination for the report output
produced by the FastExport utility. One or more ROUTE MESSAGES command may be
included anywhere in the command stream.

Syntax

where

Syntax Element Description

ECHO Additional destination, with a fileid specification

For example, use the ECHO keyword to specify that messages be captured in a
file (fileid2) while still being written to the terminal.

Note: The ECHO OFF specification cancels the additional file specification of a
previously established ECHO destination.

fileid1 and fileid2 Alternate message destinations in the external system:

• In z/OS, the fileid is a DDNAME. (See the “z/OS fileid Usage Rules” topic in
the “Usage Notes” subsection.)

• In UNIX and Windows, the fileid is the path name for a file

If the path name has embedded white space characters, must enclose the
entire path name in single or double quotes.

• In z/VM, the fileid is a FILEDEF name

If the same destination with both fileid1 and fileid2 parameters is specified,
FastExport duplicates the messages at each destination.

2409A037

.ROUTE ;

TO echo options
MESSAGES FILE fileid1

ECHO

WITH

OFF

TO

echo options

FILE fileid2
116 Teradata FastExport Reference

Chapter 3: FastExport Commands
ROUTE MESSAGES
Usage Notes

Table 42 describes the things to consider when using the ROUTE MESSAGES command.

Example

In the following example, the messages are written to the file designated by OUTPUT from
this point unless redirected by another ROUTE MESSAGES command:

.ROUTE MESSAGES FILE OUTPUT;

Note: On UNIX and Windows platforms, if the same outfilename is used to redirect stdout
and as the fileid in a ROUTE MESSAGES WITH ECHO command, the results written to
outfilename may be incomplete due to conflicting writes to the same file.

Table 42: ROUTE MESSAGES Command Usage Notes

Topic Usage Notes

Specifying the System
Console/Standard Output
Device

Use the asterisk (*) character as the fileid1 or fileid2 specifications to
route messages to the system console/standard output (stdout) device.

The system console is the:

• Display screen in interactive mode

• Standard output device in batch mode

For more information about the display screen and standard output
devices, see “File Requirements” on page 21.

Default Message
Destinations

If the ROUTE MESSAGES command is not used, FastExport writes
output messages to:

• DDNAME SYSPRINT in z/VM and z/OS

• stdout in UNIX and Windows

z/OS fileid Usage Rules If a DDNAME is specified, FastExport writes messages to the specified
source.

A DDNAME must obey the same construction rules as Teradata SQL
column names except that:

• The “at” character (@) is allowed as an alphabetic character

• The underscore character (_) is not allowed

The DDNAME must obey the applicable rules of the external system.

If the DDNAME represents a data source on magnetic tape, the tape
may be either labeled or nonlabeled, as supported by the operating
system.
Teradata FastExport Reference 117

Chapter 3: FastExport Commands
RUN FILE
RUN FILE

Purpose
The RUN FILE command invokes the specified external file as the current source for utility
commands and statements.

Syntax

where

Syntax Element Description

fileid Data source of the external system

The external system DD (or similar) statement specifies a file:

• In UNIX and Windows, the fileid is the path name for a file

If the path name has embedded white space characters, enclose the entire
path name in single or double quotes.

• In z/VM, the fileid is a FILEDEF name

• In z/OS, a DDNAME. (See the “z/OS fileid Usage Rules” topic in the “Usage
Notes” subsection.)

IGNORE
charpos1 and
charpos2

Start and end character positions of a field in each input record that contains
extraneous information. If one of the following is specified:

• charpos1, then FastExport ignores only the single specified character

• charpos1 THRU, then FastExport ignores all characters from charpos1
through the end of the record

• THRU charpos2, then FastExport ignores all characters from the beginning
of the record through charpos2

• charpos1 THRU charpos2, then FastExport ignores all characters from
charpos1 through charpos2

2409A038

.RUN FILE

IGNORE

;fileid
charpos1

charpos2

 THRU

 THRU
118 Teradata FastExport Reference

Chapter 3: FastExport Commands
RUN FILE
Usage Notes

Table 43 describes the things to consider when using the RUN FILE command.

Table 43: RUN FILE Command Usage Notes

Topic Usage Notes

Specifying the System
Console/Standard Input
Device

Use the asterisk (*) character as the fileid specification for the system
console/standard input (stdin) device.

The system console is the:

• Keyboard in interactive mode

• Standard input device in batch mode

For more information about the keyboard and standard input devices,
see “File Requirements” on page 21.

z/OS fileid Usage Rules If a DDNAME is specified, FastExport reads data records from the
specified source.

A DDNAME must obey the same construction rules as Teradata SQL
column names except that:

• The “at” character (@) is allowed as an alphabetic character

• The underscore character (_) is not allowed

The DDNAME must obey the applicable rules of the external system.

If the DDNAME represents a data source on magnetic tape, the tape
may be either labeled or nonlabeled, as supported by the operating
system.

Executing the RUN FILE
Command

After FastExport executes the RUN FILE command, it reads additional
commands from the specified source until a LOGOFF command or
end-of-file condition is encountered, whichever occurs first.

An end-of-file condition automatically causes FastExport to resume
reading its commands and DML statements from the previously active
source:

• SYSIN for z/VM and z/OS

• stdin (normal or redirected) for UNIX and Windows

Note: SYSIN/stdin remains the active input source after FastExport
processes any user-provided invocation parameters.

Nested RUN Commands The source specified by a RUN FILE command can have up to 16 levels
of nested RUN commands.
Teradata FastExport Reference 119

Chapter 3: FastExport Commands
SET
SET

Purpose
The SET command assigns a data type and a value to a FastExport utility variable. The SET
command is a valid command preceding LOGON and LOGTABLE commands.

Syntax

where

Usage Notes

Table 44 describes the things to consider when using the SET command.

Syntax Element Description

var Name of the FastExport utility variable to be set to the evaluated expression

2409A039

.SET

TO

;var expression

Table 44: SET Command Usage Notes

Topic Usage Notes

Declaring
Variables

Variables need not be declared in advance to be the object of the SET command.
If a variable does not already exist, FastExport creates it.

Variables used to the right of TO in the expression must be declared in advance.

Changing the Data
Type

The SET command also dynamically changes the data type to that of the
assigned value if it had already been defined.

If the expression evaluates to a numeric value, the symbol is assigned an integer
value, as in:

.SET FOONUM TO -151 ;

If the expression is a quoted string, the symbol is assigned a string value, as in:

.SET FOOCHAR TO ’-151’ ;

The minimum and maximum limits for floating point data types are as follows:

4.0E-75 <=abs(float variable)<7.0E75

Variable
Substitution

A FastExport variable can be substituted wherever substitution is allowed.
120 Teradata FastExport Reference

Chapter 3: FastExport Commands
SET
Example 1

Boolean operations can be performed using the SET command, such as:

.SET A TO 0;

.SET B TO NOT &A;

.DISPLAY ‘&B’ TO FILE CONSOLE = = > The value of 1 is returned

Example 2

FastExport supports logical and relational operators using the SET command, such as:

.SET A TO 1;

.SET B TO 0;

.SET Z TO (A or B);

Example 3

FastExport supports concatenation of variables, using the SET command, such as:

.SET C TO 1;

.SET D TO 2;

.SET X TO &C.&D;

In this example, X evaluates to 12.

If a decimal point is added to the concatenated variables, then X evaluates to 1.2, as in:

.SET C TO 1;

.SET D TO 2;

.SET X TO &C..&D;
Teradata FastExport Reference 121

Chapter 3: FastExport Commands
SYSTEM
SYSTEM

Purpose
The SYSTEM command submits an operating system command to the client environment
during a FastExport operation.

Syntax

where

Usage Notes

The SYSTEM command suspends the current FastExport operation to execute the client
operating system command.

When the client operating system command completes, FastExport displays the return code
from the invoked command and updates the &SYSRC variable.

Example

The following example deletes the file /home/fexpuser/tests/out1 if it exists. The command
string then creates a new /home/fexpuser/tests/out1 file to contain the exported records from
the SELECT statement.

.SYSTEM 'rm -f /home/fexpuser/tests/out1';

.BEGIN EXPORT;
SEL * FROM table1;
.EXPORT OUTFILE /home/fexpuser/tests/out1;
.END EXPORT;

Syntax Element Description

oscommand Any legal command in the client operating system

2409A040

.SYSTEM ' ' ;oscommand
122 Teradata FastExport Reference

APPENDIX A

How to Read Syntax Diagrams

This appendix describes the conventions that apply to reading the syntax diagrams used in
this book.

Syntax Diagram Conventions

Notation Conventions

Paths

The main path along the syntax diagram begins at the left with a keyword, and proceeds, left
to right, to the vertical bar, which marks the end of the diagram. Paths that do not have an
arrow or a vertical bar only show portions of the syntax.

The only part of a path that reads from right to left is a loop.

Item Definition / Comments

Letter An uppercase or lowercase alphabetic character ranging from A through Z.

Number A digit ranging from 0 through 9.

Do not use commas when typing a number with more than 3 digits.

Word Variables and reserved words.

• UPPERCASE LETTERS represent a keyword.

Syntax diagrams show all keywords in uppercase, unless operating system
restrictions require them to be in lowercase.

• lowercase letters represent a keyword that you must type in lowercase, such as a
UNIX command.

• lowercase italic letters represent a variable such as a column or table name.

Substitute the variable with a proper value.

• lowercase bold letters represent a variable that is defined immediately
following the diagram that contains the variable.

• UNDERLINED LETTERS represent the default value.

This applies to both uppercase and lowercase words.

Spaces Use one space between items such as keywords or variables.

Punctuation Type all punctuation exactly as it appears in the diagram.
Teradata FastExport Reference 123

Appendix A: How to Read Syntax Diagrams
Syntax Diagram Conventions
Continuation Links

Paths that are too long for one line use continuation links. Continuation links are circled
letters indicating the beginning and end of a link:

When you see a circled letter in a syntax diagram, go to the corresponding circled letter and
continue reading.

Required Entries

Required entries appear on the main path:

If you can choose from more than one entry, the choices appear vertically, in a stack. The first
entry appears on the main path:

Optional Entries

You may choose to include or disregard optional entries. Optional entries appear below the
main path:

If you can optionally choose from more than one entry, all the choices appear below the main
path:

FE0CA002

A

A

FE0CA003

SHOW

FE0CA005

SHOW

VERSIONS

CONTROLS

FE0CA004

SHOW

CONTROLS
124 Teradata FastExport Reference

Appendix A: How to Read Syntax Diagrams
Syntax Diagram Conventions
Some commands and statements treat one of the optional choices as a default value. This
value is UNDERLINED. It is presumed to be selected if you type the command or statement
without specifying one of the options.

Strings

Strings appear in single quotes:

If the string text includes a single quote or a blank space, the string appears in double quotes:

Abbreviations

If a keyword or a reserved word has a valid abbreviation, the unabbreviated form always
appears on the main path. The shortest valid abbreviation appears beneath.

In the above syntax, the following formats are valid:

• SHOW CONTROLS

• SHOW CONTROL

Loops

A loop is an entry or a group of entries that you can repeat one or more times. Syntax
diagrams show loops as a return path above the main path, over the item or items that you can
repeat:

JC01A010
SHARE

READ

ACCESS

JC01A004

'msgtext'

JC01A005

''abc'd"

''abc d"

FE0CA042

SHOW

CONTROL

CONTROLS
Teradata FastExport Reference 125

Appendix A: How to Read Syntax Diagrams
Syntax Diagram Conventions
Read loops from right to left.

The following conventions apply to loops:

Excerpts

Sometimes a piece of a syntax phrase is too large to fit into the diagram. Such a phrase is
indicated by a break in the path, marked by (|) terminators on either side of the break. The
name for the excerpted piece appears between the terminators in boldface type.

Loop Convention Description

A maximum number of entries is
allowed.

The number appears in a circle on the return path.

In the example, you may type cname a maximum of 4 times.

A minimum number of entries is
required.

The number appears in a square on the return path.

In the example, you must type at least three groups of column
names.

A separator character is required
between entries.

The character appears on the return path.

If the diagram does not show a separator character, use one
blank space.

In the example, the separator character is a comma.

A delimiter character is required
around entries.

The beginning and end characters appear outside the return
path.

Generally, a space is not needed between delimiter characters
and entries.

In the example, the delimiter characters are the left and right
parentheses.

JC01B012

(

, 4

cname)

, 3
126 Teradata FastExport Reference

Appendix A: How to Read Syntax Diagrams
Syntax Diagram Conventions
The boldface excerpt name and the excerpted phrase appears immediately after the main
diagram. The excerpted phrase starts and ends with a plain horizontal line:

Multiple Legitimate Phrases

In a syntax diagram, it is possible for any number of phrases to be legitimate:

In this example, any of the following phrases are legitimate:

• dbname

• DATABASE dbname

• tname

• TABLE tname

• vname

• VIEW vname

LOCKING excerpt

where_cond

A

cname

excerpt

JC01A014

A

HAVING con

,

col_pos

,

JC01A016

DATABASE

dbname

TABLE

tname

VIEW

vname
Teradata FastExport Reference 127

Appendix A: How to Read Syntax Diagrams
Syntax Diagram Conventions
Sample Syntax Diagram

Diagram Identifier

The alphanumeric string that appears in the lower right corner of every diagram is an internal
identifier used to catalog the diagram. The text never refers to this string.

JC01A018

viewnameCREATE VIEW AS

cname

A

C

CV

,

LOCKING

LOCK

ACCESSA

DATABASE

dbname

TABLE

tname

VIEW

vname

FOR

IN

B

SHARE

READ

WRITE

EXCLUSIVE

EXCL

MODE

FROMB SEL C

.aname

expr

,

tname

,

qual_cond

qual_cond

WHERE cond

cname

,

col_pos

,
GROUP BY

HAVING cond ;
128 Teradata FastExport Reference

APPENDIX B

Invocation Examples

This appendix provides JCL and command examples for invoking FastExport on z/VM, z/OS,
and on UNIX and Windows systems.

z/VM

This section provides JCL and command examples for invoking FastExport on z/VM systems.

Reduced Print Output (BRIEF) Parameter

Sample Command:
fastexpt stress1 brief

Note: stress1 is a sample input script.

Sample Output:

**** 10:15:36 UTY2414 BRIEF option is enabled.
===
 FastExport Utility Release FEXP.13.00.00.000 =
 Platform VM =
===
 =
 Copyright 1990-2008, Teradata Corporation. ALL RIGHTS RESERVED. =
 =
===
**** 10:15:36 UTY2411 Processing start date: FRI MAY 18,
===
 Logon/Connection =
===
0001 .logtable fexp_test;
0002 .logon tdp9/fexp,;
**** 10:15:37 UTY8400 Default character set: EBCDIC
**** 10:15:52 UTY6211 A successful connect was made to the DBS.
**** 10:15:52 UTY6217 Logtable 'fexp.FEXP_TEST' has been created.
.
.
.

Character Set Selection (CHARSET) Parameter

Sample Command:
fastexpt stress1 charset=ebcdic
Teradata FastExport Reference 129

Appendix B: Invocation Examples
z/VM
Note: stress1 is a sample input script.

Sample Output:

**** 10:27:56 UTY2407 Run time parameters in effect are:
CHARSET=EBCDIC.

===
= =
= FastExport Utility Release FEXP.13.00.00.000 =
= Platform z/VM =
= =
===
= =
= Copyright 1990-2008, Teradata Corporation. ALL RIGHTS RESERVED. =
= =
===
**** 10:27:56 UTY2411 Processing start date: FRI MAY 18,
===
= =
= Logon/Connection =
= =
===

0001 .logtable fexp_test;
0002 .logon tdp9/fexp,;
**** 10:28:10 UTY6211 A successful connect was made to the DBS.
**** 10:28:10 UTY6217 Logtable 'fexp.FEXP_TEST' has been created.
.
.
.

Error Logging (ERRLOG) Parameter

Sample Command:
fastexpt stress1 errlog=foo

Note: stress1 is a sample input script. foo must be defined. In this example foo was defined by:

filedef foo disk error file a

Sample Output:

**** 10:31:54 UTY2413 Error Logging is enabled: FOO
===
= =
= FastExport Utility Release FEXP.13.00.00.000 =
= Platform z/VM =
= =
===
= =
= Copyright 1990-2008, Teradata Corporation. ALL RIGHTS RESERVED. =
= =
===
**** 10:31:54UTY2411 Processing start date: FRI MAY 18, 2008
===
= =
= Logon/Connection =
130 Teradata FastExport Reference

Appendix B: Invocation Examples
z/OS
= =
===
0001 .logtable fexp_test;
0002 .logon tdp9/fexp,;
**** 10:32:26 UTY8400 Default character set: EBCDIC
/***/
/* */
/* Test handling multiple Fexp tasks. */
/* */
/***/
.
.
.

Specify Multiple Parameters

Sample Command:
fastexpt stress1 charset=ebcdic brief

Note: stress1 is a sample input script.

Sample Output:

**** 10:43:18 UTY2407 Run time parameters in effect are: CHARSET=EBCDIC.
**** 10:43:18 UTY2414 BRIEF option is enabled.
==
= FastExport Utility Release FEXP.13.00.00.000 =
= Platform z/VM =
==
= =
= Copyright 1990-2008, Teradata Corporation. ALL RIGHTS RESERVED. =
= =
==
**** 10:43:18 UTY2411 Processing start date: FRI MAY 18, 2008
==
= Logon/Connection =
==
0001 .logtable fexp_test;
0002 .logon tdp9/fexp,;
**** 10:43:32 UTY6211 A successful connect was made to the DBS.
**** 10:43:32 UTY6217 Logtable 'fexp.FEXP_TEST' has been created.
0003
/***/
/* */
/* Test handling multiple Fexp tasks. */
/* */
/***/
.
.
.

z/OS

This section provides JCL and command examples for invoking FastExport on z/OS systems.
Teradata FastExport Reference 131

Appendix B: Invocation Examples
z/OS
Reduced Print Output (BRIEF) Parameter

Sample JCL:
//FEXPMLD05 JOB (78030000),'FOO',
// REGION=4096K
//JOBLIB DD DISP=SHR,DSN=TERADATA.APPLOAD
// DD DISP=SHR,DSN=TERADATA.TRLOAD
//FEXPRUN EXEC PGM=XPORT,PARM='BRIEF'
//SYSPRINT DD SYSOUT=A
//SYSIN DD DATA,DLM=##
.LOGTABLE FEXP_TABLE5;
.LOGON TDP9/FEXP,FEXP;
.VERSION;
.LOGOFF;
##

Sample Output:

000081 ***
000082
000083 **** 14:23:13 UTY2414 BRIEF option is enabled.
000084 ===
000085 = FastExport Utility Release FEXP.13.00.00.000 =
000086 = Platform z/OS =
000087 ===
000088 = =
000099 = Copyright 1990-2008, Teradata Corporation. ALL RIGHTS RESERVED. =
000090 = =
000091 ===
000092 **** 14:23:13 UTY2411 Processing start date: FRI MAY 18, 2008
000093 ===
000094 = Logon/Connection =
000095 ===
000096 0001 .LOGTABLE FEXP_TABLE5;
000097 0002 .LOGON TDP9/FEXP,;
000098 **** 14:23:16 UTY8400 Default character set: EBCDIC
000099 **** 14:23:46 UTY6211 A successful connect was made to the DBS.
000100 **** 14:23:46 UTY6217 Logtable 'FEXP.FEXP_TABLE5' has been created.
000101
000102 0003 .VERSION;
.
.
.

Character Set Selection (CHARSET) Parameter

Sample JCL:
//FEXPMLD15 JOB (78030000),'FOO',
// REGION=4096K
//JOBLIB DD DISP=SHR,DSN=TERADATA.APPLOAD
// DD DISP=SHR,DSN=TERADATA.TRLOAD
//FEXPRUN EXEC PGM=XPORT,PARM='CHARSET=EBCDIC'
//SYSPRINT DD SYSOUT=A
//SYSIN DD DATA,DLM=##
.LOGTABLE FEXP_TABLE5;
.LOGON TDP9/FEXP,FEXP;
132 Teradata FastExport Reference

Appendix B: Invocation Examples
z/OS
.VERSION;

.LOGOFF;
##

Sample Output:
000082
000083 **** 15:43:31 UTY2407 Run time parameters in effect are:

CHARSET=EBCDIC.
000084 ===
000085 = =
000086 = FastExport Utility Release FEXP.13.00.00.000 =
000087 = Platform z/OS =
000088 = =
000089 ===
000090 = =
000091 = Copyright 1990-2008, Teradata Corporation. ALL RIGHTS RESERVED.=
000092 = =
000093 ===
000094 **** 15:43:31 UTY2411 Processing start date: FRI MAY 18, 2008
000095 ===
000096 = =
000097 = Logon/Connection =
000098 = =
000099 ===
000100 0001 .LOGTABLE FEXP_TABLE5;
000101 0002 .LOGON TDP9/FEXP,;
000102 **** 15:43:52 UTY6211 A successful connect was made to the DBS.
000103 **** 15:43:52 UTY6217 Logtable 'FEXP.FEXP_TABLE5' has been created.
000104 ==
000105 = =
000106 = Processing Control Statements =
000107 = =
000108 ==
.
.
.

Error Logging (ERRLOG) Parameter

Sample JCL:
//FEXPMLD16 JOB (78030000),'FOO',
// REGION=4096K
//JOBLIB DD DISP=SHR,DSN=TERADATA.APPLOAD
// DD DISP=SHR,DSN=TERADATA.TRLOAD
//FEXPRUN EXEC PGM=XPORT,PARM='ERRLOG=FOO'
//FOO DD DSN=FEXP.FOO.OUTPUT,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSIN DD DATA,DLM=##
.LOGTABLE FEXP_TABLE5;
.LOGON TDP9/FEXP,FEXP;
.VERSION;
.LOGOFF;

Sample Output:
Teradata FastExport Reference 133

Appendix B: Invocation Examples
z/OS
000085 ***
000086
000087 **** 15:19:47 UTY2413 Error Logging is enabled: FOO
000088 ===
000089 = =
000090 = FastExport Utility Release FEXP.13.00.00.000 =
000091 = Platform z/OS =
000092 = =

 000093 ===
000094 = =
000095 = Copyright 1990-2008, Teradata Corporation. ALL RIGHTS RESERVED. =
000096 = =
000097 ==
000098 =**** 15:19:47 UTY2411 Processing start date: FRI MAY 18, 2008

 000099 ===
000100 = =
000101 = Logon/Connection =
000102 = =
000103 ===
000104 0001 .LOGTABLE FEXP_TABLE5;
000105 0002 .LOGON TDP9/FEXP,;
000106 **** 15:19:48 UTY8400 Default character set: EBCDIC
000107 **** 15:20:12 UTY6211 A successful connect was made to the DBS.
000108 **** 15:20:12 UTY6217 Logtable 'FEXP.FEXP_TABLE5' has been created.
000109 ===
000110 = =
000111 = Processing Control Statements =
000112 = =
000113 ===
.
.
.

Specify Multiple Parameters

Sample JCL:
//FEXPMLD17 JOB (78030000),'FOO',
// REGION=4096K
//JOBLIB DD DISP=SHR,DSN=TERADATA.APPLOAD
// DD DISP=SHR,DSN=TERADATA.TRLOAD
//FEXPRUN EXEC PGM=XPORT,PARM='BRIEF,CHARSET=EBCDIC'
//SYSPRINT DD SYSOUT=A
//SYSIN DD DATA,DLM=##
.LOGTABLE FEXP_TABLE5;
.LOGON TDP9/FEXP,FEXP;
.VERSION;
.LOGOFF;
##

Sample Output:

00083 **** 15:49:40 UTY2414 BRIEF option is enabled.
00084 **** 15:49:40 UTY2407 Run time parameters in effect are:

CHARSET=EBCDIC.
00085 ===
00086 = FastExport Utility Release FEXP.13.00.00.000 =
00087 = Platform z/OS =
134 Teradata FastExport Reference

Appendix B: Invocation Examples
UNIX and Windows
00088 ===
00089 = =
00090 = Copyright 1990-2008, Teradata Corporation. ALL RIGHTS RESERVED. =
00091 = =
00092 ===
00093 **** 15:49:40 UTY2411 Processing start date: FRI MAY 18, 2008
00094 ===
00095 = Logon/Connection =
00096 ===
00097 0001 .LOGTABLE FEXP_TABLE5;
00098 0002 .LOGON TDP9/FEXP,;
00099 **** 15:50:10 UTY6211 A successful connect was made to the DBS.
00100 **** 15:50:10 UTY6217 Logtable 'FEXP.FEXP_TABLE5' has been created.
00101
00102 0003 .VERSION;
.
.
.

UNIX and Windows

This section provides JCL and command examples for invoking FastExport on UNIX and
Windows systems.

Run File (-r) Parameter

The typical selection is:

fexp -r '.RUN FILE fexp.startup;' < infilename > outfilename

Sample Command:
fexp -r '.run file logon;' < job.fexp

Sample Output:
==
= =
= FastExport Utility Release FEXP.13.00.00.000 =
= Platform MP-RAS =
= =
==
= =
= Copyright 1990-2008, Teradata Corporation. ALL RIGHTS RESERVED. =
= =
==
**** 13:58:25 UTY2411 Processing start date: FRI MAY 18, 2008
==
= =
= Logon/Connection =
= =
==
0002 .logtable fexplog;
0003 .logon cs4300s1/fexp,;
**** 14:01:13 UTY8400 Default character set: ASCII
**** 14:01:17 UTY6211 A successful connect was made to the RDBMS.
Teradata FastExport Reference 135

Appendix B: Invocation Examples
UNIX and Windows
**** 14:01:17 UTY6217 Logtable 'fexp.fexplog' has been created.
==
= =
= Processing Control Statements =
= =
==
0004 .begin export sessions 4;
0005 sel * from dbc.sessioninfo;
0006 .export outfile job.out mode record;
0007 .end export;
.
.
.

Reduced Print Output (-b) Parameter

Sample Command:
fexp -b < foo2

Sample Output:

**** 15:13:01 UTY2414 BRIEF option is enabled.
==
= =
= FastExport Utility Release FEXP.13.00.00.000 =
= Platform MP-RAS =
= =
==
= =
= Copyright 1990-2008, Teradata Corporation. ALL RIGHTS RESERVED. =
= =
==
**** 15:13:01 UTY2411 Processing start date: FRI MAY 18, 2008
==
= =
= Logon/Connection =
= =
==
0001 .run file logon;
0002 .logon shogun/fexp,;
**** 15:13:01 UTY6214 Reminder: A .Logtable statement must be entered for a

successful logon.
0003 .logtable fexptest2;
**** 15:13:04 UTY8400 Default character set: KANJIEUC_0U
**** 15:13:08 UTY6211 A successful connect was made to the DBS.
**** 15:13:08 UTY6217 Logtable 'fexp.fexptest2' has been created.
.
.
.

Character Set Selection (-c) Parameter

Sample Command:
fexp -c ascii
136 Teradata FastExport Reference

Appendix B: Invocation Examples
UNIX and Windows
Sample Output:

**** 15:27:35 UTY2407 Run time parameters in effect are: ASCII.
===
= =
= FastExport Utility Release FEXP.13.00.00.000 =
= Platform MP-RAS =
= =
===
= =
= Copyright 1990-2008, Teradata Corporation. ALL RIGHTS RESERVED. =
= =
===
**** 15:27:35 UTY2411 Processing start date: FRI MAY 18, 2008
===
= =
= Logon/Connection =
= =
===
0001 .run file logon;
0002 .logon shogun/fexp,;
**** 15:27:35 UTY6214 Reminder: A .Logtable statement must be entered for a

successful logon.
===
= =
= Processing Control Statements =
= =
===
0003 .logtable fexptest2;
**** 15:27:39 UTY6211 A successful connect was made to the DBS.
**** 15:27:39 UTY6217 Logtable 'fexp.fexptest2' has been created.
.
.
.

Error Logging (-e) Parameter

Sample Command:
fexp -e errfile < foo2

Sample Output:

**** 15:33:10 UTY2413 Error Logging is enabled: errfile
===
= FastExport Utility Release FEXP.13.00.00.000 =
= Platform MP-RAS =
===
= =
= Copyright 1990-2008, Teradata Corporation. ALL RIGHTS RESERVED. =
= =
===
**** 15:33:10 UTY2411 Processing start date: FRI MAY 18, 2008
===
= Logon/Connection =
===
0001 .run file logon;
Teradata FastExport Reference 137

Appendix B: Invocation Examples
UNIX and Windows
0002 .logon shogun/fexp,;
**** 15:33:10 UTY6214 Reminder: A .Logtable statement must be entered for a

successful logon.
===
= =
= Processing Control Statements =
= =
===
0003 .logtable fexptest2;
.
.
.

Specify Multiple Parameters

Sample Command:
fexp -c ascii -b

Sample Output:

**** 15:38:31 UTY2407 Run time parameters in effect are: ASCII.
**** 15:38:31 UTY2414 BRIEF option is enabled.
==
= FastExport Utility Release FEXP.13.00.00.000 =
= Platform MP-RAS =
==
= =
= Copyright 1990-2008, Teradata Corporation. ALL RIGHTS RESERVED. =
= =
==
**** 15:38:31 UTY2411 Processing start date: FRI MAY 18, 2008
==
= Logon/Connection =
==
0001 .run file logon;
0002 .logon shogun/fexp,;
**** 15:38:31 UTY6214 Reminder: A .Logtable statement must be entered for a

successful logon.
0003 .logtable fexptest2;
**** 15:38:34 UTY6211 A successful connect was made to the DBS.
**** 15:38:34 UTY6217 Logtable 'fexp.fexptest2' has been created.
.
.
.

138 Teradata FastExport Reference

APPENDIX C

INMOD, OUTMOD and
Notify Exit Routine Examples

This appendix provides examples of INMOD, OUTMOD, and notify exit routines on the
following client platforms:

• z/VM

• z/OS

• UNIX

• Windows

Table Format

In each case, for z/VM, z/OS and UNIX client systems, the example presumes that a table
named TranLogTable has been created on the Teradata Database as follows:

CREATE TABLE TranLogTable
(TranDate Date,
 Region Char(3),
 CustNo Char(12),

 OrderNo Char(6),
 ProdCode Char(8),
 Quantity Integer,
 Price Integer)
 Unique Primary Index(OrderNo, ProdCode);

The Windows examples are presented differently.

Row Format

In each case, for z/VM, z/OS and UNIX client systems, the columns to be selected are: Region,
ProdCode, Quantity and Price.

The examples sort response data by Region and ProdCode and return it in indicator mode
format. The response records are therefore defined in the same format as that for a row of the
TranLogTable on the Teradata Database, plus the leading indicator byte.

Each response row has 20 bytes, consisting of:
Teradata FastExport Reference 139

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
z/VM
In the OUTMOD examples, the FastExport utility passes each response record to a client
procedure called ChkTran that modifies selected transaction records and notifies FastExport
to either drop or to write each record to the client data set.

The Windows examples are presented differently.

z/VM

Generating a COBOL OUTMOD Routine

The following example uses the name CHKTRAN as the member name to generate an
OUTMOD routine on z/VM client systems:

IDENTIFICATION DIVISION.
PROGRAM-ID. DYNAMN.
AUTHOR. USER.
INSTALLATION. TERADATA.
DATE-WRITTEN. 12 AUGUST 1992
DATE_COMPLIED.
SECURITY. OPEN.
REMARKS.

THIS PROCEDURE IS INVOKED BY THE TERADATA FASTEXPORT
UTILITY TO PROCESS THE RESPONSE DATA RETURNED FROM THE
SAMPLE SELECT. THE PROCEDURE EXAMINES EACH RESPONSE
RECORD TO DETERMINE IF THE RECORD SHOULD BE WRITTEN
TO AN ERROR DATA SET AND THEN EITHER DROPPED OR
WRITTEN TO THE STANDARD DATA SET. ONE ERROR DATA SET
CONTAINS RECORDS WITH A NULL REGION CODE. THE OTHER
ERROR DATA SET CONTAINS RECORDS WITH A TOTAL SALES
VALUE OF LESS THAN $100. THESE LATTER RECORDS ARE NOT
WRITTEN TO THE STANDARD DATA SET.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT SALES-DROPPED-FILE ASSIGN TO FILE1OUT.
SELECT BAD-REGN-SALES-FILE ASSIGN TO FILE2OUT.

DATA DIVISION.
FILE SECTION.
FD SALES-DROPPED-FILE

BLOCK CONTAINS 1 RECORDS
LABEL RECORDS STANDARD.

01 DROPPED-TRANLOG.

Indicator Flags 1 byte

Region 3 bytes

ProdCode 8 bytes

Quantity 4 bytes

Price 4 bytes
140 Teradata FastExport Reference

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
z/VM
02 INDICATORS PIC 9.
02 REGN PIC XXX.
02 PRODUCT PIC X(8).
02 QTY PIC S9(8) COMP.
02 PRICE PIC S9(8) COMP.

FD BAD-REGN-SALES-FILE
BLOCK CONTAINS 1 RECORDS
LABEL RECORDS STANDARD.

01 BAD-REGN-TRANLOG.
02 INDICATORS PIC 9.
02 REGN PIC XXX.
02 PRODUCT PIC X(8).
02 QTY PIC S9(8) COMP.
02 PRICE PIC S9(8) COMP.

LINKAGE SECTION.
01 ENTRY-TYPE PIC S9(5) COMP.
01 STATEMENT-NOPIC S9(5) COMP.
01 RECORD-SIZE PIC S9(5) COMP.
01 TRANLOG.

05 INDICATORS PIC 9.
05 REGN PIC XXX.
05 PRODUCT PIC X(8).
05 QTY PIC S9(8) COMP.
05 PRICE PIC S9(8) COMP.

01 OUTPUT-LENGTHPIC S9(5) COMP.
01 OUTPUT-AREA PIC XXXX.
PROCEDURE DIVISION USING

ENTRY-TYPE, STATEMENT-NO, RECORD-SIZE, TRANLOG,
OUTPUT-LENGTH, OUTPUT-AREA.

BEGIN.
MAIN.

IF ENTRY-TYPE = 1 THEN
OPEN OUTPUT SALES-DROPPED-FILE
OPEN OUTPUT BAD-REGN-SALES-FILE
GOBACK.

IF ENTRY-TYPE = 2 THEN
CLOSE SALES-DROPPED-FILE
CLOSE BAD-REGN-SALES-FILE
GOBACK.

IF ENTRY-TYPE = 3 THEN
PERFORM TYPE-3

GOBACK.
IF ENTRY-TYPE = 4 THEN

GOBACK.
IF ENTRY-TYPE = 5 THEN

CLOSE SALES-DROPPED-FILE
OPEN OUTPUT SALES-DROPPED-FILE
CLOSE BAD-REGN-SALES-FILE
OPEN OUTPUT BAD-REGN-SALES-FILE
GOBACK.

IF ENTRY-TYPE = 6 THEN
OPEN OUTPUT SALES-DROPPED-FILE
OPEN OUTPUT BAD-REGN-SALES-FILE
GOBACK.

DISPLAY "Invalid entry code = " ENTRY-TYPE.
GOBACK.

TYPE-3.
IF QTY IN TRANLOG * PRICE IN TRANLOG < 100 THEN

MOVE 0 TO RECORD-SIZE
Teradata FastExport Reference 141

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
z/VM
WRITE DROPPED-TRANLOG FROM TRANLOG
ELSE

PERFORM TEST-NULL-REGN.
TEST-NULL-REGN.

IF REGN IN TRANLOG = SPACES
MOVE 999 TO REGN IN TRANLOG
WRITE BAD-REGN-TRANLOG FROM TRANLOG.

Omit the Default Entry Point

Use the OSDECK option of the COBOL compiler to omit the default entry point name when
generating a dynamically loadable COBOL procedure. If the COBOL source in the preceding
example is in file CHKTRAN COBOL, the following z/VM command compiles the source and
creates the object module as file CHKTRAN TEXT:

COBOL CHKTRAN (OSDECK

Create the Load Module

Use the following commands to create the load module:

FILEDEF SYSLIB DISK COBLIBVS TXTLIB *
LKED CHKTRAN (LIBE DYNAMC NAME CHKTRAN AMODE 24 RMODE 24

Note: The appropriate file mode to the FILEDEF command defining the TXTLIB containing
the COBOL modules may have to be added. CHKTRAN LKEDIT and DYNAMC LOADLIB
are the two files output from the linkedit.

Generate a C OUTMOD Routine

The following C example generates an OUTMOD routine on z/VM client systems:

/* TITLE CHKTRAN ... Output procedure for TranLogTable export run */
/* */
/* */
/* Purpose This procedure is called by the Teradata FastExport */
/* utility for each response row returned to the host. */
/* The procedure examines each row to determine if the */
/* row should be output to an error data set and then */
/* either dropped or written to the standard data set. */
/* One error data sets contain records with a null */
/* region code the other contains records with a total */
/* sales value less than $100. These latter records */
/* are not written to the standard data set. */
/* */
/* */
#include <stdio.h>
#define chkbit(a,b) (((0x80 >> (b-1)) & (a)) ? 1 : 0)
/* Define the structure of the response row */
struct tranlog
{

char Indicators;
char Region[3];
char Product[8];
long Qty;
142 Teradata FastExport Reference

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
z/VM
long Price;
} ;

#define minsale 100 /* minimum sales to report */
FILE *file1, *file2;
int _dynamn(EntryType, StmtNo,

RespLen, RespRec,
OutLen, OutRec)

int *EntryType;
int *StmtNo;
int *RespLen;
struct tranlog*RespRec;
int *OutLen;
char *OutRec;
{
long recsize;
struct tranlog recout;
/* case on entry type
*/
switch (*EntryType) {
case 1:

/* Normal start */
file1 = fopen("ddn:file1out", "wb");
file2 = fopen("ddn:file2out", "wb");
break;

case 2:
/* EOF for response data */
fclose(file1);
fclose(file2);
break;

case 3:
/* Process response record */
if ((RespRec->Qty * RespRec->Price) < minsale)
{

*RespLen = 0;
recout = *RespRec;
recsize = fwrite(&recout, sizeof(recout), 1, file1);

}
else
{
/* If the region is null then change it to a dummy region.
*/ if (chkbit(RespRec->Indicators,1))

{
RespRec->Region[1] = '9';
RespRec->Region[2] = '9';
RespRec->Region[3] = '9';
recout = *RespRec;
recsize = fwrite(&recout, sizeof(recout), 1, file2);

}
}

break;
case 4:

/* no checkpoints to worry about */
break;

case 5:
/* DBC restart - close and reopen the output files */
file1 = freopen("ddn:file1out", "wb", file1);
file2 = freopen("ddn:file2out", "wb", file2);
break;

case 6:
Teradata FastExport Reference 143

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
z/VM
/* Host restart same as normal since there are no checkpoints */
file1 = fopen("ddn:file1out", "wb");
file2 = fopen("ddn:file2out", "wb");
break;

default:
printf("Invalid entry code = %d\n", *EntryType);
break;

}
return(0);
}

Compile the OUTMOD Routine

Use the SAS LC370 exec to compile the OUTMOD routine. The macro library LC370
MACLIB for use by the compiler must also be established. Use the following commands to
compile the OUTMOD routine, assuming that the source is in file CHKTRAN C:

GLOBAL MACLIB LC370
LC370 CHKTRAN

Link the Object File

The object file output by the compiler resides in file CHKTRAN TEXT. Link edit the file as a
member of the loadlib named DYNAMC. Use the CLINK EXEC, provided by SAS, for this
purpose. The following CLINK command assumes that the object module is in file
CHKTRAN TEXT:

GLOBAL TXTLIB LC370STD LC370BAS
CLINK CHKTRAN (LKED LIBE DYNAMC NAME CHKTRAN AMODE 24

 RMODE 24

CHKTRAN LKEDIT and DYNAMC LOADLIB are the two files output from the linkedit.

Execute the OUTMOD Routine

Before executing the OUTMOD, the run-time libraries must be established and the filedefs
are generated for the data input and output to the sample export run.

Because the FastExport utility was written using SAS/C, make the latest version of the SAS/C
run time libraries available for execution.

Execution of the FastExport utility also requires the latest version of the Teradata run-time
libraries.

In this example, an input record that contains a begin and end date defines the time period for
the data to be exported. These dates are in the first eight bytes of the record in year, month,
and day integer format. The record is read from the data set defined by DDName InName.

FastExport uses the Teradata Database table Tranlog as the restart log. The logon string is read
from the data set defined by DDName PwdName. FastExport-generated response data is
written through DDName OutName.

FastExport Utility Directives

Following are the directives for the FastExport utility:
144 Teradata FastExport Reference

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
z/OS
.LOGTABLE TranLog ; /* define restart log */

.RUN FILE PwdName ; /* Get the logon string */
/* from a file */

.BEGIN EXPORT /* Specify export function */
SESSIONS 20; /* number of sessions to be used */

.LAYOUT Control ; /* Define the control record */
.FIELD Date1 * Date ;
.FIELD Date2 * Date ;

.IMPORT INFILE InName /* Identify input control file */
LAYOUT Control ; /* and where the description is. */

.EXPORT OUTFILE OutName /* identify the destination */
OUTMOD ChkTran ; /* file and the procedure */

/* to receive the records. */
SELECTRegion, /* provide the SQL SELECT */

ProdCode,
Quantity,
Price

From TranLogTable
WHERE TranDate BETWEEN :Date1 and :Date2
ORDER BY Region, ProdCode;

.END EXPORT ; /* terminate the export */
/* operation */

.LOGOFF ; /* disconnect from the DBC */

The FastExport utility reads the initial commands through stream SYSIN. The default output
is through stream SYSPRINT.

The sample OUTMOD procedure writes data to streams FILE1OUT and FILE2OUT. It also
uses the Printf call in C or the DISPLAY verb in COBOL which uses stream SYSOUT.

z/VM Directives

Following is an example of the z/VM directives used to execute the sample FastExport scripts:

GLOBAL LOADLIB LSCRTL
GLOBAL TXTLIB CLI
FILEDEF SYSIN DISK CHKTRAN MX$INPUT
FILEDEF PWDNAME DISK PSWD NAME
FILEDEF INNAME DISK TRANIN DATA
FILEDEF SYSPRINT TERMINAL
FILEDEF SYSOUT TERMINAL
FILEDEF OUTNAME DISK TRANOUT DATA (RECFM V
FILEDEF FILE1OUT DISK FILE1OUT DATA (RECFM F LRECL 20 BLKSIZE 20
FILEDEF FILE2OUT DISK FILE2OUT DATA (RECFM F LRECL 20 BLKSIZE 20
XPORT

z/OS

The COBOL and C examples for z/OS:

• Compile and link edit the OUTMOD routine from the input source language statements
included in the SYSIN data stream
Teradata FastExport Reference 145

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
z/OS
• Place the resulting load module in a specified load library

Generate a COBOL OUTMOD Routine

The following COBOL example is in <dbcpfx>.SAMPLIB (CHKTRANB) on the release tape.

The procedure executes the COBUCL exec that compiles the input source using program
product IKFCBL00 and then link edits the object module into the USER loadlib as member
Chktran.

//USERJOBUSER JOB (20750000),'USERNAME',MSGCLASS=A,NOTIFY=USER,
// CLASS=B,MSGLEVEL=(1,1),REGION=5120K
//COBCOMPL EXEC COBUCL
//COB.SYSIN DD *

IDENTIFICATION DIVISION.
PROGRAM-ID. CHKTRAN.
AUTHOR. USER.
INSTALLATION. TERADATA.
DATE-WRITTEN. 12 AUGUST 1992
DATE_COMPLIED.
SECURITY. OPEN.
REMARKS.

THIS PROCEDURE IS INVOKED BY THE TERADATA FASTEXPORT
UTILITY TO PROCESS THE RESPONSE DATA RETURNED FROM
THE SAMPLE SELECT. THE PROCEDURE EXAMINES EACH
RESPONSE RECORD TO DETERMINE IF THE RECORD SHOULD BE
WRITTEN TO AN ERROR DATA SET AND THEN EITHER DROPPED
OR WRITTEN TO THE STANDARD DATA SET. ONE ERROR DATA
SET CONTAINS RECORDS WITH A NULL REGION CODE. THE
OTHER ERROR DATA SET CONTAINS RECORDS WITH A TOTAL
SALES VALUE OF LESS THAN $100. THESE LATTER RECORDS
ARE NOT WRITTEN TO THE STANDARD DATA SET.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT SALES-DROPPED-FILE ASSIGN TO FILE1OUT.
SELECT BAD-REGN-SALES-FILE ASSIGN TO FILE2OUT.

DATA DIVISION.
FILE SECTION.
FD SALES-DROPPED-FILE

BLOCK CONTAINS 160 RECORDS
LABEL RECORDS STANDARD.

01 DROPPED-TRANLOG.
02 INDICATORS PIC 9.
02 REGN PIC XXX.
02 PRODUCT PIC X(8).
02 QTY PIC S9(8) COMP.
02 PRICE PIC S9(8) COMP.

FD BAD-REGN-SALES-FILE
BLOCK CONTAINS 160 RECORDS
LABEL RECORDS STANDARD.

01 BAD-REGN-TRANLOG.
02 INDICATORS PIC 9.
02 REGN PIC XXX.
146 Teradata FastExport Reference

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
z/OS
02 PRODUCT PIC X(8).
02 QTY PIC S9(8) COMP.
02 PRICE PIC S9(8) COMP.

LINKAGE SECTION.
01 ENTRY-TYPE PIC S9(5) COMP.
01 STATEMENT-NOPIC S9(5) COMP.
01 RECORD-SIZE PIC S9(5) COMP.
01 TRANLOG.

05 INDICATORS PIC 9.
05 REGN PIC XXX.
05 PRODUCT PIC X(8).
05 QTY PIC S9(8) COMP.
05 PRICE PIC S9(8) COMP.

01 OUTPUT-LENGTHPIC S9(5) COMP.
01 OUTPUT-AREA PIC XXXX.
PROCEDURE DIVISION USING

ENTRY-TYPE, STATEMENT-NO, RECORD-SIZE, TRANLOG,
OUTPUT-LENGTH, OUTPUT-AREA.

BEGIN.
MAIN.

IF ENTRY-TYPE = 1 THEN
OPEN OUTPUT SALES-DROPPED-FILE
OPEN OUTPUT BAD-REGN-SALES-FILE
GOBACK.

IF ENTRY-TYPE = 2 THEN
CLOSE SALES-DROPPED-FILE
CLOSE BAD-REGN-SALES-FILE
GOBACK.

IF ENTRY-TYPE = 3 THEN
PERFORM TYPE-3
GOBACK.

IF ENTRY-TYPE = 4 THEN
GOBACK.

IF ENTRY-TYPE = 5 THEN
CLOSE SALES-DROPPED-FILE
OPEN OUTPUT SALES-DROPPED-FILE
CLOSE BAD-REGN-SALES-FILE
OPEN OUTPUT BAD-REGN-SALES-FILE
GOBACK.

IF ENTRY-TYPE = 6 THEN
OPEN OUTPUT SALES-DROPPED-FILE
OPEN OUTPUT BAD-REGN-SALES-FILE
GOBACK.

DISPLAY “Invalid entry code = ” ENTRY-TYPE.
GOBACK.

TYPE-3.
IF QTY IN TRANLOG * PRICE IN TRANLOG < 100 THEN

MOVE 0 TO RECORD-SIZE
WRITE DROPPED-TRANLOG FROM TRANLOG

ELSE
PERFORM TEST-NULL-REGN.

TEST-NULL-REGN.
IF REGN IN TRANLOG = SPACES

MOVE 999 TO REGN IN TRANLOG
WRITE BAD-REGN-TRANLOG FROM TRANLOG.

/*
//LKED.SYSLMOD DD DSN=USERLOADLIB(CHKTRAN),DISP=MOD
//LKED.SYSIN DD *
 MODE AMODE(24) RMODE(24)
Teradata FastExport Reference 147

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
z/OS
 ENTRY CHKTRAN
 NAME CHKTRAN(R)

/*

Generate a PL/I INMOD Routine

Following is an example of compiling and linking a PL/I INMOD routine.

//MXM049A JOB (22150000),'MXM',MSGCLASS=A,NOTIFY=MXM
//STEP1 EXEC PGM=IEV90,REGION=1024K,
// PARM='OBJ,NODECK,XREF(FULL)'
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
// DD DSN=SYS1.AMODGEN,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSTERM DD SYSOUT=*
//SYSUT1 DD UNIT=VIO,SPACE=(CYL,(9,5))
//SYSUT2 DD UNIT=VIO,SPACE=(CYL,(9,5))
//SYSUT3 DD UNIT=VIO,SPACE=(CYL,(9,5))
//SYSLIN DD DSN=&&PLIA,DISP=(,PASS),UNIT=SCR,
// SPACE=(CYL,(1,1)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSIN DD *
 TITLE 'DYNAMN'
DYNAMN CSECT
 EXTRN PLISTART
 B START-*(,R15) BRANCH AROUND CONSTANTS
 DC AL1(L'PLIAFLAG) LENGTH OF CONSTANTS
PLIAFLAG DC C'ASSEMBLED AT &SYSTIME ON &SYSDATE.. PLIA'
 DC C' COPYRIGHT (C) 1999 NCR CORPORATION,'
 DC C' ALL RIGHTS RESERVED.'
*==
* ENTRY POINT
*==
START SAVE (14,12)
 LR R12,R15 -> PROGRAM ENTRY POINT
 USING DYNAMN,R12
*
 LA R10,SAVAREA
 ST R10,8(R13) FORWARD CHAIN
 ST R13,4(R10) BACK CHAIN
 LR R13,R10
*
 LR R4,R1 SAVE PARM LIST ADDRESS
 L R3,0(,R1) -> COMMAND WORD
 L R3,0(,R3) COMMAND WORD
 CH R3,=H'0' INITIAL CALL?
 BE DO_INIT YES , DO INITIAL CODE
 CH R3,=H'6' INITIAL CALL?
 BE DO_INIT YES , DO INITIAL CODE
 CH R3,=H'2' INITIAL CALL?
 BNE DO_CALL NO, JUST GO CALL PROGRAM
*==
* SETUP PL/I ENVIRONMENT
*==
DO_INIT DS 0H
*
* WTO 'PRIOR TO INIT REQUEST'
*
148 Teradata FastExport Reference

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
z/OS
 MVC PRP_REQUEST,INIT INDICATE THE INIT REQUEST
*
 LA R1,EXEC_ADDR GET THE PARM ADDR LIST
 ST R1,EPL_EXEC_OPTS SAVE IN EPL
*
 LA R1,PARM_EPL R1 --> POINTER --> REQUEST LIST
 L R15,PSTART PL/I ENTRY ADDR
 BALR R14,R15 INVOKE PL/I
*
* WTO 'AFTER INIT REQUEST'
*==
* CALL "OPTIONS(MAIN)" INMOD
*==
DO_CALL DS 0H
*
* WTO 'PRIOR TO CALL REQUEST'
*
 MVC PRP_REQUEST,CALL INDICATE THE CALL REQUEST
*
 ST R4,EPL_PROG_PARMS SAVE PARM ADDR IN EPL
 LA R1,PARM_EPL R1 --> POINTER --> REQUEST LIST
 L R15,PSTART PL/I ENTRY ADDR
 BALR R14,R15 INVOKE PL/I
*
 CH R3,=H'5' FINAL CALL?
 BNE DO_RTN NO, JUST RETURN TO CALLER
*==
* TERMINATE THE PL/I ENVIRONMENT
*==
DO_TERM DS 0H
*
 ST R15,RETCODE SAVE PL/I RETURN CODE
*
* WTO 'PRIOR TO TERM REQUEST'
*
 MVC PRP_REQUEST,TERM INDICATE A TERM COMMAND
*
 LA R1,0 NO PARM LIST IS PRESENT
 ST R1,EPL_PROG_PARMS SAVE IN EPL
*
 LA R1,PARM_EPL R1 --> POINTER --> REQUEST LIST
 L R15,PSTART PL/I ENTRY ADDR
 BALR R14,R15 INVOKE PL/I
*
* WTO 'AFTER TERM REQUEST'
*==
* RETURN TO CALLER
*==
DO_RTN DS 0H
*
 L R13,SAVAREA+4
 L R14,12(R13)
 L R15,RETCODE
 LM R0,R12,20(R13)
 BR R14 RETURN TO YOUR CALLER
 EJECT
 EJECT
*==
* CONSTANTS AND WORKAREAS
Teradata FastExport Reference 149

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
z/OS
*==
SAVAREA DS 20F
RETCODE DC F'0'
PARM_EPL DC A(X'80000000'+IBMBZPRP) PARAMETER ADDR LIST
PSTART DC A(PLISTART)
*==
* REQUEST STRINGS ALLOWED IN THE INTERFACE
*==
INIT DC CL8'INIT' INITIALIZE THE PROGRAM ENVIR
CALL DC CL8'CALL' INVOKE THE APPL - LEAVE ENVIR UP
TERM DC CL8'TERM' TERMINATE ENVIRONMENT
EXEC DC CL8'EXECUTE' INIT, CALL, TERM - ALL IN ONE
*==
* PARAMETER LIST PASSED BY A PRE-INITIALIZED PROGRAM
* ADDRESSED BY REG 1 = A(A(IBMBZPRP))
* SEE IBMBZEPL DSECT.
*==
IBMBZPRP DS 0F
PRP_LENGTH DC H'16' LEN OF THIS PRP PASSED (16)
PRP_ZERO DC H'0' MUST BE ZERO
PRP_REQUEST DC CL8' ' 'INIT' - INITIALIZE PL/I
* 'CALL' - INVOKE APPLICATION
* 'TERM' - TERMINATE PL/I
* 'EXECUTE' - INIT, CALL, TERM
*
PRP_EPL_PTR DC A(IBMBZEPL) A(EPL) - EXTENDED PARM LIST
*==
* PARAMETER LIST FOR THE PRE-INITIALIZED PROGRAM
*==
IBMBZEPL DS 0F
EPL_LENGTH DC A(EPL_SIZE) LENGTH OF THIS EPL PASSED
EPL_TOKEN1 DC F'0' FIRST ENV TOKEN
EPL_TOKEN2 DC F'0' SECOND ENV TOKEN
EPL_PROG_PARMS DC F'0' A(PARM ADDRESS LIST) ...
EPL_EXEC_OPTS DC A(EXEC_ADDR) A(EXECUTION TIME OPTNS) ...
EPL_ALTMAIN DC F'0' A(ALTERNATE MAIN)
EPL_SERVICE_VEC DC A(IBMBZSRV) A(SERVICE ROUTINES VECTOR)
EPL_SIZE EQU *-IBMBZEPL THE SIZE OF THIS BLOCK
*==
* SERVICE ROUTINE VECTOR
*==
IBMBZSRV DS 0F
SRV_SLOTS DC F'2' COUNT OF SLOTS DEFINED
SRV_USERWORD DC A(SRV_UA) USER WORD
SRV_WORKAREA DC A(SRV_WA) A(WORKAREA)
SRV_LOAD DC F'0' A(LOAD ROUTINE)
SRV_DELETE DC F'0' A(DELETE ROUTINE)
SRV_GETSTOR DC F'0' A(GET STORAGE ROUTINE)
SRV_FREESTOR DC F'0' A(FREE STORAGE ROUTINE)
SRV_EXCEP_RTR DC F'0' A(EXCEPTION ROUTER SERVICE)
SRV_ATTN_RTR DC F'0' A(ATTENTION ROUTER SERVICE)
SRV_MSG_RTR DC F'0' A(MESSAGE ROUTER SERVICE)
SRV_END DS 0F
*==
* SERVICE ROUTINE USERAREA
*==
SRV_UA DS 8F
*==
* SERVICE ROUTINE WORKAREA
150 Teradata FastExport Reference

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
z/OS
*==
SRV_WA DS 0D
 DC F'256' LENGTH OF WORKAREA
 DS 63F ACTUAL WORKAREA
*==
* EXECUTION TIME PARAMETERS
*==
EXEC_ADDR DC A(X'80000000'+EXEC_LEN)
EXEC_LEN DC AL2(EXEC_OLEN)
EXEC_OPTS DC C'NATLANG(ENU),NOSTAE'
EXEC_OLEN EQU *-EXEC_OPTS
*
 LTORG
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
 END
//*
//STEP2 EXEC IEL1CL
//PLI.SYSPRINT DD SYSOUT=*
//PLI.SYSIN DD *
 INMDPL2: PROCEDURE (X,Y) OPTIONS (MAIN);

 DCL X FIXED, Y FIXED;

 DCL 1 PARM_LIST ALIGNED BASED(P),
 10 STATUS FIXED BINARY (31,0),
 10 RLENGTH FIXED BINARY (31,0),
 10 BUFFER CHAR(80);
 DCL 1 PARM_PARM2 ALIGNED BASED(Q),
 10 SEQ FIXED BINARY (31,0),
 10 LEN FIXED BINARY (15,0),
 10 PARAMETER CHAR(80);
 DCL COUNT STATIC FIXED BINARY (31,0),
 INSROWS STATIC FIXED BINARY (31,0),
 REJROWS STATIC FIXED BINARY (31,0);
 DCL I, NOTMATCH FIXED BINARY (31,0);
 DCL ADDR BUILTIN, SUBSTR BUILTIN;
 DCL P POINTER, Q POINTER;
 DCL SYSPRINT FILE OUTPUT;

 P = ADDR(X);
 Q = ADDR(Y);

 OPEN FILE(SYSPRINT);
 PUT SKIP LIST('### INSIDE PL/I INMOD ROUTINE...');
Teradata FastExport Reference 151

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
z/OS
 PUT SKIP LIST('STATUS =');
 PUT LIST(P->STATUS);
 PUT SKIP LIST('LENGTH =');
 PUT LIST(P->RLENGTH);
 PUT SKIP LIST('BUFFER =');
 PUT LIST(SUBSTR(P->BUFFER,1,30));
 PUT SKIP LIST('SEQ =');
 PUT LIST(Q->SEQ);
 PUT SKIP LIST('PARM =');
 PUT LIST(SUBSTR(Q->PARAMETER,1,Q->LEN));

 SELECT (P->STATUS);

 WHEN (6) DO; /* INITIALIZE */
 COUNT = 0;
 REJROWS = 0;
 INSROWS = 0;
 P->STATUS = 0;
 END;

 WHEN (7) DO; /* PROCESS */
 COUNT = COUNT + 1;
 NOTMATCH = 0;
 P->STATUS = 0;
 DO I = 1 TO Q -> LEN;
 IF SUBSTR(P->BUFFER,I,1) ^= SUBSTR(Q->PARAMETER,I,1)
 THEN DO;
 NOTMATCH= 1;
 LEAVE;
 END;
 END;
 IF NOTMATCH = 1
 THEN DO;
 PUT SKIP LIST('------> REJECTED <------');
 REJROWS = REJROWS + 1;
 P->RLENGTH = 0;
 END;
 ELSE
 DO;
 PUT SKIP LIST('------> ACCEPTED <------');
 INSROWS = INSROWS + 1;
 END;
 END;

 WHEN (5) DO; /* FINALIZE */
 P->STATUS = 0;
 END;

 OTHERWISE DO;
 PUT SKIP LIST ('UNKNOWN CODE...');
 P->STATUS = 99;
 END;
 END;

 PUT SKIP LIST('STATUS =');
 PUT LIST(P->STATUS);
 PUT SKIP LIST('LENGTH =');
 PUT LIST(P->RLENGTH);
 PUT SKIP LIST('TOTAL =');
152 Teradata FastExport Reference

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
z/OS
 PUT LIST(COUNT);
 PUT SKIP LIST('INSERTS =');
 PUT LIST(INSROWS);
 PUT SKIP LIST('REJROWS =');
 PUT LIST(REJROWS);
 PUT SKIP LIST('---');
 CLOSE FILE(SYSPRINT);

 END INMDPL2;
//LKED.SYSPRINT DD SYSOUT=*
//LKED.PLIA DD DISP=(OLD,DELETE),DSN=&&PLIA
//LKED.SYSIN DD *
 INCLUDE PLIA
 ENTRY DYNAMN
 NAME INMDPL2(R)

Generate a SAS/C OUTMOD Routine

The following SAS/C example is in <dbcpfx>.SAMPLIB (CHKTRANC) on the release tape.

The procedure executes the SAS/C exec LC375CL, which compiles the source statements and
then link edits them into the USER loadlib as member Chktran.

The ENTRY=NONE parameter to the LC375CL proc is required because the entry point
name of the OUTMOD routine is not _dynamn. The ENTRY parameter to the linkedit is
also required because the LC375CL proc does not generate such a parameter.

//USEREXP JOB (20750000),'USERNAME',MSGCLASS=A,NOTIFY=USER,
// CLASS=B,MSGLEVEL=(1,1),REGION=5120K
//CCOMPL EXEC LC375CL,ENTRY=NONE
//C.SYSIN DD DATA,DLM=##
/* TITLE CHKTRAN ... Output procedure for TranLogTable export run */

/* */
/* */
/* Purpose This procedure is called by the Teradata FastExport */
/* utility for each response row returned to the host. */
/* The procedure examines each row to determine if the */
/* row should be output to an error data set and then */
/* either dropped or written to the standard data set. */
/* One error data sets contain records with a null */
/* region code the other contains records with a total */
/* sales value less than $100. These latter records */
/* are not written to the standard data set. */
/* */
/* */
#include <stdio.h>
#define chkbit(a,b) (((0x80 >> (b-1)) & (a)) ? 1 : 0)
/* Define the structure of the response row */
struct tranlog
 {
char Indicators;
char Region[3];
char Product[8];
long Qty;
long Price;
Teradata FastExport Reference 153

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
z/OS
 } ;#define minsale 100 /* minimum sales to report */
FILE *file1, *file2;
int chktran(EntryType, StmtNo,

 RespLen, RespRec,
 OutLen, OutRec)

int *EntryType;
int *StmtNo;
int *RespLen;
struct tranlog*RespRec;
int *OutLen;
char *OutRec;
{
long recsize;
struct tranlog recout;
/* case on entry type */
switch (*EntryType) {
case 1:

/* Normal start */
file1 = fopen(“ddn:file1out”, “wb”);
file2 = fopen(“ddn:file2out”, “wb”);
break;

case 2:
/* EOF for response data */
fclose(file1);
fclose(file2);
break;

case 3:
/* Process response record */
if ((RespRec->Qty * RespRec->Price) < minsale)
 {

*RespLen = 0;
recout = *RespRec;
recsize = fwrite(&recout, sizeof(recout), 1, file1);

 }
else
 {
 /* If the region is null then change it to a dummy region.
 */ if (chkbit(RespRec->Indicators,1))

 {
RespRec->Region[1] = '9';
RespRec->Region[2] = '9';
RespRec->Region[3] = '9';
recout = *RespRec;
recsize = fwrite(&recout, sizeof(recout), 1, file2);

 }
 }

break;
case 4:

/* no checkpoints to worry about */
break;

case 5:
/* DBC restart - close and reopen the output files */
file1 = freopen("ddn:file1out", "wb", file1);
file2 = freopen("ddn:file2out", "wb", file2);
break;

case 6:
/* Host restart same as normal since there are no checkpoints */
file1 = fopen("ddn:file1out", "wb");
file2 = fopen("ddn:file2out", "wb");
154 Teradata FastExport Reference

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
z/OS
break;
default:

printf("Invalid entry code = %d\n", *EntryType);
break;

}
return(0);
}

//LKED.SYSLMOD DD DSN=USER.LIB.LOAD(CHKTRAN),DISP=MOD
//LKED.SYSIN DD DATA,DLM=##
MODE AMODE(24) RMODE(24)
ENTRY CHKTRAN
NAME CHKTRAN(R)

Execute the OUTMOD Routine

Use the following z/OS JCL to execute FastExport and either the SAS/C or the COBOL
OUTMOD routine. The JOBLIB statements define both run-time libraries.

The SAS/C procedures are required to support FastExport. The COBOL procedures are
required only if an OUTMOD routine written in COBOL exists.

The FastExport control commands in this example vary from those for the z/VM example as
follows:

• The LOGON statement is included with the rest of the FastExport control commands

• The IMPORT command is omitted, meaning that the Teradata SQL SELECT statement
was modified to include a date range in the request rather than acquiring it through a
USING clause

//USEREXP JOB (20750000),'USERNAME',MSGCLASS=A,NOTIFY=USER,
// CLASS=A,MSGLEVEL=(1,1),REGION=4096K
//JOBLIB DD DSN=TERADATA.TRLOAD,DSP=SHR
// DD DSN=TERADATA.APPLOAD,DISP=SHR
// DD DSN=SYS1.VSCOLIB,DISP=SHR
//EXP EXEC PGM=XPORT,REGION=4096K
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//OUTNAME DD DSN=USER.EXPORT.TEST1,DISP=(NEW,CATLG,DELETE),
// DCB=(NCP=20,RECFM=FB,LRECL=20,BLKSIZE=3200,DSORG=PS),
// UNIT=SYSDA,SPACE=(3200,(300,1))
//FILE1OUT DD DSN=USER.EXPORT.TEST2,DISP=(NEW,CATLG,DELETE),
// DCB=(NCP=20,RECFM=FB,LRECL=20,BLKSIZE=3200,DSORG=PS),
// UNIT=SYSDA,SPACE=(3200,(1,1))
//FILE2OUT DD DSN=USER.EXPORT.TEST3,DISP=(NEW,CATLG,DELETE),
// DCB=(NCP=20,RECFM=FB,LRECL=20,BLKSIZE=3200,DSORG=PS),
// UNIT=SYSDA,SPACE=(3200,(1,1))
//SYSIN DD *
.LOGTABLE TranLog; /* define restart log */
.LOGON TDPV/USER,USER; /* the logon string */
.BEGIN EXPORT /* Specify export function */
SESSIONS 20; /* number of sessions to be used */
.EXPORT OUTFILE OutName /* identify the destination */
OUTMOD ChkTran; /* file and the procedure */

/* to receive the records. */
Teradata FastExport Reference 155

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
UNIX
SELECTRegion, /* provide the SQL SELECT */
ProdCode,
Quantity,
Price

From TranLogTable
WHERE TranDate BETWEEN 911231 and 920701
ORDER BY Region, ProdCode;
.END EXPORT; /* terminate FastExport */
.LOGOFF /* disconnect from the DBC */

UNIX

C INMOD Example

This INMOD example reads the function code and executes different processing functions
based on its value.

/* This program is for release 4.1 MULTILOAD INMOD testing using C
user exit routine.
When this routine is activated it looks at the content of the
function code passed (a->code) and depending on its value, it
0) initializes, i.e., opens a file, etc...
1) reads a record
5) acknowledges "close inmod" request. The user exit routine

must return "return code"(a->code) and "length" (a->len). You
should send return code = zero when no errors occur and non-zero for
an error. MULTILOAD expects length = zero at the end of file. Then
it sends "CLOSE INMOD" request. THE USER EXIT routine must
explicitly return "return code" = ZERO to terminate the
conversation. */
#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
typedef unsigned short Int16;
typedef unsigned char Int8;
typedef unsigned long int Int32;

/* PASSING parameter structures */

typedef struct {
Int32 code;
Int32 len;
Int8 buf[80];

} inmodbuf;

typedef struct {
Int32 seq;
Int16 len;
char param[80];

} inmodpty;

static FILE *IN;
static int count=0;
char *memcpy();
156 Teradata FastExport Reference

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
UNIX
void _dynamn(a,b)
inmodbuf *a;
inmodpty *b;
{int code=0;
char tempbuf[80];

memcpy(tempbuf,a->buf,sizeof(a->buf));
tempbuf[79]='\0';
printf("BEGIN--> %d %d %s\n",a->code,a->len,tempbuf);
printf(" +++ %d %d %s\n",b->seq ,b->len,b->param);
code= (int) a->code;

switch (code) {
case 0:
/* Here you open the file and read the first record */
printf("## CODE=0, openinig...\n");
IN=fopen("ddn:INDATA","rb");
if (! ferror(IN)) {

if (! readrecord(a))
fclose(IN);

};
break;
case 1:
/* MultiLoad requested next record, read it */
printf("## CODE=1, reading...\n");
if (! readrecord(a))

fclose(IN);
break;

case 5:
/* MultiLoad is closing INMOD routine */
a->code=0;
a->len=0;
printf("## CODE=5, terminating...\n");
break;
default:
a->code=12; /* any number not = to zero */
a->len=0;
printf("##### UNKNOWN code ######\n");a->code=0;a->len=0;

};

memcpy(tempbuf,a->buf,sizeof(a->buf));
tempbuf[79]='\0';
printf("END --> %d %d %s\n",a->code,a->len,tempbuf);
printf(" +++ %d %d %s\n",b->seq ,b->len,b->param);

}

vint readrecord(a)
inmodbuf *a;
{
int rtn=0;
char tempbuf[80];

if (fread((char *)&(a->buf),sizeof(a->buf),1,IN)) {
count++;

memcpy(tempbuf,a->buf,sizeof(a->buf));
tempbuf[79]='\0';
printf(" %d %s \n",count,tempbuf);
Teradata FastExport Reference 157

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
UNIX
a->len=80;
a->code=0;
rtn=1;

};
if ferror(IN) {

printf("==== error ====\n");
a->code=16; /* any non zero number */
a->len=0;

};
if feof(IN) { /* EOF, set length = zero */

printf("=== EOF ===\n");
a->code=9;
a->len=9;

};
return(rtn);

}

C Notify Exit Parameters

Following is a C structure that describes the parameters passed to a notify exit routine. The
pointer is a 32-bit value, and all long definitions are 32-bit unsigned.

typedef unsigned long UInt32;
typedef enum {

NMEventInitialize = 0,
NMEventFileInmodOpen = 1,
NMEventPhaseIBegin = 2,
NMEventCheckPoint = 3,
NMEventPhaseIEnd = 4,
NMEventPhaseIIBegin = 5,
NMEventPhaseIIEnd = 6,
NMEventErrorTableI = 7,
NMEventErrorTableII = 8,
NMEventDBSRestart = 9,
NMEventCLIError = 10,
NMEventDBSError = 11,
NMEventExit = 12,
NMEventAmpsDown = 21,
NMEventImportBegin = 22,
NMEventImportEnd = 23,
NMEventDeleteInit = 24,
NMEventDeleteBegin = 25,
NMEventDeleteEnd = 26,
NMEventDeleteExit = 27

} NfyMLDEvent;
/**************************************/
/* Structure for User Exit Interface */
/* DR42570 - redesigned and rewritten */
/**************************************/
#define NOTIFYID_FASTLOAD 1
#define NOTIFYID_MULTILOAD 2
#define NOTIFYID_FASTEXPORT 3
#define NOTIFYID_BTEQ 4
#define NOTIFYID_TPUMP 5
#define MAXVERSIONIDLEN 32
#define MAXUTILITYNAMELEN 32
#define MAXUSERNAMELEN 64
#define MAXUSERSTRLEN 80
158 Teradata FastExport Reference

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
UNIX
#define MAXTABLENAMELEN 128
#define MAXFILENAMELEN 256
typedef struct _MLNotifyExitParm {

UInt32 Event; /* should be NfyMLDEvent values */
union {

struct {
UInt32 VersionLen;
char VersionId[MAXVERSIONIDLEN];
UInt32 UtilityId;
UInt32 UtilityNameLen;
char UtilityName[MAXUTILITYNAMELEN];
UInt32 UserNameLen;
char UserName[MAXUSERNAMELEN];
UInt32 UserStringLen;
char UserString[MAXUSERSTRLEN];

} Initialize;
struct {

UInt32 FileNameLen;
char FileOrInmodName[MAXFILENAMELEN];
UInt32 ImportNo;

} FileInmodOpen ;
struct {

UInt32 TableNameLen;
char TableName[MAXTABLENAMELEN];
UInt32 TableNo;

} PhaseIBegin;
struct {

UInt32 RecordCount;
} CheckPoint;
struct {

UInt32 RecsRead;
UInt32 RecsSkipped;
UInt32 RecsRejected;
UInt32 RecsSent;

} PhaseIEnd ;
struct {

UInt32 dummy;
} PhaseIIBegin;
struct {

UInt32 Inserts;
UInt32 Updates;
UInt32 Deletes;
UInt32 TableNo;

} PhaseIIEnd;
struct {

UInt32 Rows;
UInt32 TableNo;

} ErrorTableI;
struct {

UInt32 Rows;
UInt32 TableNo;

} ErrorTableII ;
struct {

UInt32 dummy;
} DBSRestart;
struct {

UInt32 ErrorCode;
} CLIError;
struct {
Teradata FastExport Reference 159

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
UNIX
UInt32 ErrorCode;
} DBSError;
struct {

UInt32 ReturnCode;
} Exit;
struct {

UInt32 dummy;
} AmpsDown;
struct {

UInt32 ImportNo;
} ImportBegin ;
struct {

UInt32 RecsRead;
UInt32 RecsSkipped;
UInt32 RecsRejected;
UInt32 RecsSent;
UInt32 ImportNo;

} ImportEnd ;
struct {

UInt32 dummy;
} DeleteInit;
struct {

UInt32 TableNameLen;
char TableName[MAXTABLENAMELEN];
UInt32 TableNo;

} DeleteBegin;
struct {

UInt32 Deletes;
UInt32 TableNo;

} DeleteEnd;
struct {

UInt32 ReturnCode;
} DeleteExit;

} Vals;
} MLNotifyExitParm;

#ifdef I370
#define MLNfyExit MLNfEx
#endif
extern long MLNfyExit(
#ifdef __STDC__

MLNotifyExitParm *Parms
#endif
);

Compile and Link Routines

Note: For a description of the syntax diagrams used in this book, see Appendix A: “How to
Read Syntax Diagrams.”

Sun Solaris Opteron

To compile and link source files into a shared object module for INMOD or notify exit
routines on Sun Solaris Opteron client systems, use the following syntax:
160 Teradata FastExport Reference

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
UNIX
where

MP-RAS and Sun Solaris SPARC

To compile and link source files into a shared object module for INMOD or notify exit
routines on MP-RAS and Sun Solaris SPARC client systems, use the following syntax:

Compile Syntax

where

Syntax Element Description

cc Invokes the MetaWare High C Compiler

-dy Specifies to use dynamic linking

-G Specifies to create a shared object

sourcefile Is a source module for the INMOD

-o Specifies the output file name

shared-object-name Specifies the resulting shared object module

This is the name specified as the:

• INMOD modulename parameter in the IMPORT of the FastExport job
script

• EXIT name parameter of the NOTIFY option in the BEGIN EXPORT
command of the FastExport job script

The shared-object-name can be any valid UNIX file name.

Syntax Element Description

gcc Call to the program that invokes the native UNIX C compiler

-shared Flag that produces a shared object that can then be linked with other objects
to form an executable

-fPIC Compiler option that generates Position Independent Code for all user exit
routines

2409A055

sourcefile.c -o shared-object-name-G-dycc

gcc -shared sourcefile.c

2410B001

-fPIC -o shared-object-name
Teradata FastExport Reference 161

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
UNIX
HP-UX PA RISC

To compile and link source files into a shared object module for INMOD and notify exit
routines on HP-UX PA RISC client systems, use the following syntax:

Compile Syntax

Link Syntax

where

sourcefile UNIX file name of the source file for the INMOD or notify exit routine

-o Switch to the linker

shared-object-name Name o f the shared object file

This is the name specified as the:

• INMOD modulename parameter in the IMPORT of the FastExport job
script

• EXIT name parameter of the NOTIFY option in the BEGIN EXPORT
command of the FastExport job script

The shared-object-name can be any valid UNIX file name.

Syntax Element Description

-b Linker option that generates a shared object file

-c Compile-only option (does not link)

cc Call to the program that invokes the native UNIX C compiler

ld Call to the program that invokes the native UNIX linker

-o Switch to the linker

objectfile Compiler-generated file used by the linker to generate shared-object-name

Syntax Element Description

2409A006

cc +z +ul -c sourcefile.c

2409A007

ld -b objectfile.o -o shared-object-name
162 Teradata FastExport Reference

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
UNIX
HP-UX Itanium

Use the following syntax example to compile a C INMOD on HP-UX Itanium-based clients.

Compile Syntax

where

Use the following syntax example to link the object modules on HP-UX Itanium into the
shared object.

shared-object-name Name of the shared object file

This is the name specified as:

• The INMOD modulename parameter of the IMPORT command of the
FastExport job script

• The EXIT name parameter for the NOTIFY option of the BEGIN
EXPORTcommand of the FastExport job script

The shared-object-name can be any valid UNIX file name.

sourcefile UNIX file name(s) of the source file(s) for the INMOD or notify exit routine

+ul Compiler option that allows pointers to access non-natively aligned data

+z Compiler option that generates Position Independent Code for all user exit
routines

Syntax Element Definition

cc Invokes the MetaWare High C compiler

+u1 Is a compiler option that allows pointers to access non-natively
aligned data

-D_REENTRANT Ensures that all the Pthread definitions are visible at compile
time

+DD64 Generates 64-bit object code for PA2.0 architecture

-c Compiles one or more source files but does not enter the
linking phase

inmod.c A C source module for the INMOD

Syntax Element Description

2409A057

inmod.c+u1cc -D_REENTRANT +DD64 -c
Teradata FastExport Reference 163

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
UNIX
Link Syntax

where

IBM AIX

To compile and link source files into a shared object module for INMOD and notify exit
routines on IBM AIX client systems, use the following syntax:

Compile Syntax

Link Syntax

Syntax Element Definition

ld Invokes the UNIX linker editor

-n Generates an executable with file type SHARE_MAGIC. This
option is ignored in 64-bit mode.

-b Is a linker option specified to generate a shared object file

inmod.o Is an object module derived from the compile step (see above)

-lc Search a library libc.a, libc.so, or libc.sh

-o Specifies the output filename; default is a.out

inmod.so Specifies the resulting shared object module
This is the user-specified name in the IMPORT command.

2409A056

inmod.o inmod.so-nld -b -lc -o

2409B008

cc -c -brtl -fPIC sourcefile.c

2409A009

ld -G -e_dynamn -bE: export_dynamn.txt

objectfile.o -o shared-object-name -lm -lc

A

A

164 Teradata FastExport Reference

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
UNIX
where

Linux

To compile and link source files into a shared object module for INMOD or notify exit
routines on Linux client systems, use the following syntax.

Note: Be sure to compile the INMOD and notify exit routines in 32-bit mode so they are
compatible with Teradata FastExport.

Compile Syntax

where

Syntax Element Description

-c Compiler option specifying to not send object files to the linkage editor

cc Call to the program that invokes the native UNIX C compiler

-bE:
export_dynamn.txt

The linker option that exports the symbol "_dynamn" explicitly and the file
export-dynamn.txt contains the symbol

-brtl Tells the linkage editor to accept both .sl and .a library file types

-e_dynamn Sets the entry point of the exit routine to _dynamn

-fPIC Compiler option that generates Position Independent Code for all user exit
routines

-G Produces a shared object-enabled for use with the run-time linker

-lc Link with the /lib/libc.a library

ld Call to the program that invokes the native UNIX linker

-lm Link with the /lib/libm.a library

-o Switch to the linker

objectfile Compiler-generated file used by the linker to generate shared-object-name

shared-object-name Name of the shared object file

The shared-object-name can be any valid UNIX file name. This is the name
specified as:

• The INMOD modulename parameter of the IMPORT command of the
FastExport job script

• The EXIT name parameter for the NOTIFY option of the BEGIN EXPORT
command of the FastExport job script

sourcefile UNIX file name(s) of the source file(s) for the INMOD or notify exit routine

2410A015

gcc inmod.c-shared -fPIC inmod.so
Teradata FastExport Reference 165

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
Windows
Windows

To generate and use an INMOD, OUTMOD or notify exit routine on a Windows client
system, the routine must:

• Be written in C

• Have a dynamn entry point that is a __declspec

• Be saved as a Dynamic Link Library (DLL) file

Generating Routines

Three sample program files are provided with the FastExport utility software to help generate
and use INMOD, OUTMOD and notify exit routines in the FastExport job scripts on
network-attached Windows client systems. The listings of these sample files are presented
later in this appendix:

Note: Though they are presented as Windows examples, the three sample files are valid for
UNIX systems, when compiled and linked into a shared object file as indicated in the
comment banner of each file.

Syntax Element Description

gcc Call to the program that invokes the native C compiler

-shared Flag that produces a shared object that can then be linked with other objects
to form an executable

-fPIC Compiler option that generates position-independent code for all user exit
routines

-o Output file name

inmod.c An INMOD source file name

inmod.so An INMOD shared object name

Sample File Description

feimod.c Source file for an INMOD routine

feomod.c Source file for an OUTMOD routine

fenotf.c Source file for a notify exit routine
166 Teradata FastExport Reference

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
Windows
To generate and use an INMOD, OUTMOD, or notify exit routine in a FastExport job

Refer to the referenced sample file listings and use this procedure for generating and using an
INMOD, OUTMOD, or notify exit routine.

1 Edit the routine source file and ensure that the dynamn name is a _declspec

2 See the listing of the sample routine files later in this appendix:

• feimod.c

• feomod.c

• fenotf.c

3 Use the following command to create a DLL:

cl /DWIN32 /LD sourcefilename

where sourcefilename is the name of the INMOD, OUTMOD, or notify exit routine source
file.

Successful command execution produces a file with the same name as the source file with
the .dll extension:

sourcefilename.dll

4 Use the sourcefilename.dll in the FastExport job script as follows:

Sample INMOD Routine

Following is the listing of the feimod.c sample INMOD routine that is provided with the
FastExport utility software:

#include <stdio.h>
#include <stdlib.h>

/**/
/* */
/* feimod.c - Sample Inmod for FastExport. */
/* */
/* Purpose - This inmod generates two integers per record. The */
/* first is even and the second number is odd. */
/* */
/* Note - The number of records per file is determined by the */
/* variable NUM_RECORDS */
/* */
/* Execute - Build Inmod on a Unix system */
/* compile and link into shared object */
/* cc -G feimod.c - o feimod.so */
/* */

Routine Type Use the sourcefilename.dll File as

INMOD INMOD modulename in the IMPORT command

OUTMOD OUTMOD modulename in the EXPORT command

Notify Exit EXIT name specification of the NOTIFY option in the BEGIN EXPORT command
Teradata FastExport Reference 167

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
Windows
/* - Build Inmod on a Win32 system */
/* compile and link into dynamic link library */
/* cl /DWIN32 /LD feimod.c */
/* */
/**/

static int msg_cnt = 0;

typedef struct {
long ioseq;
short len;
char param[2000];
} param_type;

/* This structure is used to pass an odd and an even integer */
/* back to multiload */

typedef struct {
long code;
long len;
char data[32768];
} data_type;

#ifdef WIN32 /* Change for WIN32 */
__declspec(dllexport) void _dynamn(data_type *data_buf , param_type *parm_buf)
#else
void _dynamn(data_buf, parm_buf)
data_type *data_buf;
param_type *parm_buf;
#endif
{
char *myptr;
int i;

static long RECNUM = 0; /* number of records to load */
static int odd_counter = 0; /* odd integer counter */
static int even_counter = 0; /* even integer counter */

#ifdef DEBUG
printf("\n");
printf("jmod2: on input:\n");
printf("jmod2: message code: %d\n", data_buf->code);
printf("jmod2: data bytes: %d\n", data_buf->len);
if (data_buf->len)

printf("jmod2: data: *%s*\n", data_buf->data);
printf("jmod2: param ioseq: %d\n", parm_buf->ioseq);
printf("jmod2: param bytes: %d\n", parm_buf->len);
if (parm_buf->len)

printf("jmod2: param str: %s\n", parm_buf->param);
printf("jmod2: message cnt: %d\n", ++msg_cnt);
#endif

switch (data_buf->code)
{
case 0: printf("jmod2: initializing and returning 1st record:\n");

RECNUM = 6;

printf("jmod2: Records requested = %ld\n", RECNUM);
168 Teradata FastExport Reference

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
Windows
if (RECNUM <= 0) {
printf("jmod2: numbers of records is <= 0 [%ld]\n", RECNUM);

}

/* initialize the counters */
odd_counter = 1;
even_counter = 2;

/* copy the counters to the data buffer */
myptr = (char *) &odd_counter;
for (i=0; i<4; ++i, ++myptr) {

data_buf->data[i] = *myptr;
}

myptr = (char *) &even_counter;
for (i=4; i<8; ++i, ++myptr) {

data_buf->data[i] = *myptr;
}

/* go to next values and increment the counters */
odd_counter += 2;
even_counter +=2;
--RECNUM;
/* return the results */
data_buf->code = 0;
data_buf->len = 8;
break;

case 1:
#ifdef DEBUG

printf("jmod2: returning a record:\n");
#endif

if (RECNUM) {

/* copy the counters to the data buffer */
myptr = (char *) &odd_counter;
for (i=0; i<4; ++i, ++myptr) {

data_buf->data[i] = *myptr;
}

myptr = (char *) &even_counter;
for (i=4; i<8; ++i, ++myptr) {

data_buf->data[i] = *myptr;
}

/* increment to next values and decrement record counter */
odd_counter += 2;
even_counter += 2;
--RECNUM;

/* return the results */
data_buf->code = 0;
data_buf->len = 8;
break;

} else {

/* done sending records, return non-zero result */
printf("jmod2: all records sent\n");
Teradata FastExport Reference 169

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
Windows
data_buf->code = 1;
break;

}

 case 2: printf("jmod2: repositioning to last checkpoint (HOST)\n");
 data_buf->code = 0;
 data_buf->len = 0;
 break;

 case 3: printf("jmod2: taking a checkpoint\n");
 data_buf->code = 0;
 data_buf->len = 0;
 break;

 case 4: printf("jmod2: repositioning to last checkpoint (DBC)\n");
 data_buf->code = 0;
 data_buf->len = 0;
 break;

 case 5: printf("jmod2: terminating:\n");
 data_buf->code = 0;
 data_buf->len = 0;
 break;

 case 6: printf("jmod2: initializing and receiving 1st record:\n");
 data_buf->data[1] = ’%’;
 data_buf->code = 0;
 break;

 case 7: printf("jmod2: receiving a record:\n");
 data_buf->data[1] = ’%’;
 data_buf->code = 0;
 break;
}

#ifdef DEBUG
printf("jmod2: on output:\n");
printf("jmod2: message code: %d\n", data_buf->code);
printf("jmod2: data bytes: %d\n", data_buf->len);
if (data_buf->len)

printf("jmod2: data: *%s*\n", data_buf->data);
printf("\n");
#endif
}

Sample OUTMOD Routine

Following is the listing of the feomod.c sample OUTMOD routine that is provided with the
FastExport utility software:

#include <stdio.h>
#include <stdlib.h>

/**/
/* */
/* feomod.c - Sample Outmod for FastExport. */
/* */
/* Purpose - This outmod deletes the data passed to it. */
/* */
/* Execute - Build Outmod on a Unix system */
/* compile and link into shared object */
170 Teradata FastExport Reference

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
Windows
/* cc -G feomod.c - o feomod.so */
/* */
/* - Build Outmod on a Win32 system */
/* compile and link into dynamic link library */
/* cl /DWIN32 /LD feomod.c */
/* */
/**/

typedef unsigned short Int16;
typedef unsigned char Int8;
typedef unsigned long int Int32;
#ifdef WIN32 /* Change for WIN32 */
__declspec(dllexport) Int32 _dynamn(int *code,

int *stmno,
int *InLen,
char *InBuf,
int *OutLen,
char *OutBuf

)
#else
Int32 _dynamn(code, stmno, InLen, InBuf, OutLen, OutBuf)
int *code;
int *stmno;
int *InLen;
char *InBuf;
int *OutLen;
char *OutBuf;
#endif

{
/* case on entry code
*/
switch (*code) {

 case 1: /* Initialization, no other values */
 printf ("OUTMOD Initial Entry\n");
 break;

 case 2: /* Cleanup call, no other values */
 printf ("OUTMOD End of Responses Entry\n");
 break;

 case 3: /* Process response record */
 *InLen=0;
 *OutLen=0;
 break;

 case 4:
 /* Checkpoint, no other values */
 printf ("OUTMOD Checkpoint Entry\n");
 break;

 case 5:
 /* DBC restart - close and reopen the output files */
 printf ("OUTMOD DBC Restart Entry\n");
 break;

 case 6:
 /* Host restart */
 printf ("OUTMOD Host Restart Entry\n");
 break;

 default:
 printf ("OUTMOD Invalid Entry code\n");
Teradata FastExport Reference 171

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
Windows
 break;

}

return (0);
}

Sample Notify Exit Routine

Following is the listing of the fenotf.c sample notify exit routine that is provided with the
FastExport utility software:

/**/
/* */
/* fenotf.c - Sample Notify Exit for FastExport. */
/* */
/* Purpose - This is a sample notify exit for FastExport. */
/* */
/* Execute - Build Notify on a Unix system */
/* compile and link into shared object */
/* cc -G fenotf.c - o fenotf.so */
/* */
/* - Build Notify on a Win32 system */
/* compile and link into dynamic link library */
/* cl /DWIN32 /LD fenotf.c */
/* History : Updated with new events. */
/* */
/**/
#include <stdio.h>
typedef unsigned long UInt32;
#define NOTIFYID_FASTLOAD 1
#define NOTIFYID_MULTILOAD 2
#define NOTIFYID_FASTEXPORT 3
#define NOTIFYID_BTEQ 4
#define NOTIFYID_TPUMP 5

#define MAXVERSIONIDLEN 32
#define MAXUTILITYNAMELEN 32
#define MAXUSERNAMELEN 64
#define MAXUSERSTRLEN 80
#define MAXFILENAMELEN 256
#define MAXREQUESTLEN 32000

typedef enum {
 NXEventInitialize = 0,
 NXEventFileInmodOpen = 1,
 NXEventDBSRestart = 9,
 NXEventCLIError = 10,
 NXEventDBSError = 11,
 NXEventExit = 12,
 NXEventExportBegin = 31,
 NXEventReqSubmitBegin = 32,
 NXEventReqSubmitEnd = 33,
 NXEventReqFetchBegin = 34,
 NXEventFileOutmodOpen = 35,
 NXEventStmtFetchBegin = 36,
 NXEventStmtFetchEnd = 37,
 NXEventReqFetchEnd = 38,
 NXEventExportEnd = 39
} NfyExpEvent;
172 Teradata FastExport Reference

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
Windows

typedef struct _FXNotifyExitParm {
 UInt32 Event;
 union {
 struct {
 UInt32 VersionLen;
 char VersionId[MAXVERSIONIDLEN];
 UInt32 UtilityId;
 UInt32 UtilityNameLen;
 char UtilityName[MAXUTILITYNAMELEN];
 UInt32 UserNameLen;
 char UserName[MAXUSERNAMELEN];
 UInt32 UserStringLen;
 char UserString[MAXUSERSTRLEN];
 }Initialize;
 struct {
 UInt32 FileNameLen;
 char FileOrInmodName[MAXFILENAMELEN];
 UInt32 dummy;
 } FileInmodOpen ;
 struct {
 UInt32 dummy;
 } DBSRestart;
 struct {
 UInt32 ErrorCode;
 } CLIError;
 struct {
 UInt32 ErrorCode;
 } DBSError;
 struct {
 UInt32 ReturnCode;
 } Exit;
 struct {
 UInt32 dummy;
 } ExportBegin;
 struct {
 UInt32 RequestLen;
 char Request[MAXREQUESTLEN];
 } ReqSubmitBegin;
 struct {
 UInt32 StatementCnt;
 UInt32 BlockCnt;
 } ReqSubmitEnd;
 struct {
 UInt32 dummy;
 } ReqFetchBegin;
 struct {
 UInt32 FileNameLen;
 char FileOrOutmodName[MAXFILENAMELEN];
 } FileOutmodOpen;
 struct {
 UInt32 StatementNo;
 UInt32 BlockCnt;
 } StmtFetchBegin;
 struct {
 UInt32 Records;
 } StmtFetchEnd;
 struct {
 UInt32 RecsExported;
Teradata FastExport Reference 173

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
Windows
 UInt32 RecsRejected;
 } ReqFetchEnd;
 struct {
 UInt32 RecsExported;
 UInt32 RecsRejected;
 } ExportEnd;
 } Vals;
} FXNotifyExitParm;

extern long FXNotifyExit(
#ifdef __STDC__
 FXNotifyExitParm *Parms
#endif
);

#ifdef WIN32
__declspec(dllexport) long _dynamn(FXNotifyExitParm *P)
#else
long _dynamn(FXNotifyExitParm *P)
#endif
{
 FILE *fp;

 if (!(fp = fopen("NFYEXIT.OUT", "a")))
 return(1);

 switch(P->Event) {
 case NXEventInitialize : /* Nothing */
 fprintf(fp, "exit called @ fexp init.\n");
 fprintf(fp, "Version: %s\n", P->Vals.Initialize.VersionId);
 fprintf(fp, "Utility: %s\n", P->Vals.Initialize.UtilityName);
 fprintf(fp, "User: %s\n", P->Vals.Initialize.UserName);
 if (P->Vals.Initialize.UserStringLen)
 fprintf(fp, "UserString: %s\n", P->Vals.Initialize.UserString);
 break;

 case NXEventFileInmodOpen:
 fprintf(fp, "exit called @ input file open: %s\n",
 P->Vals.FileInmodOpen.FileOrInmodName);
 break;

 case NXEventDBSRestart :
 fprintf(fp, "exit called @ RDBMS restart detected\n");
 break;

 case NXEventCLIError :
 fprintf(fp, "exit called @ CLI error %d\n",
 P->Vals.CLIError.ErrorCode);
 break;

 case NXEventDBSError :
 fprintf(fp, "exit called @ DBS error %d\n",
 P->Vals.DBSError.ErrorCode);
 break;

 case NXEventExit :
 fprintf(fp,
 "exit called @ fexp notify out of scope: return code %d.\n",
 P->Vals.Exit.ReturnCode);
174 Teradata FastExport Reference

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
Windows
 break;

 case NXEventExportBegin :
 fprintf(fp, "exit called @ export beginning.\n");
 break;

 case NXEventReqSubmitBegin :
 fprintf(fp, "exit called @ request submitted: '%s'.\n",
 P->Vals.ReqSubmitBegin.Request);
 break;

 case NXEventReqSubmitEnd :
 fprintf(fp, "exit called @ request done: %d statement(s), \
%d blocks.\n",
 P->Vals.ReqSubmitEnd.StatementCnt,
 P->Vals.ReqSubmitEnd.BlockCnt);
 break;

 case NXEventReqFetchBegin :
 fprintf(fp, "exit called @ request fetch beginning.\n");
 break;

 case NXEventFileOutmodOpen:
 fprintf(fp, "exit called @ output file open: %s\n",
 P->Vals.FileOutmodOpen.FileOrOutmodName);
 break;

 case NXEventStmtFetchBegin :
 fprintf(fp, "exit called @ statement fetch beginning: stmt #%d, \
%d blocks.\n",
 P->Vals.StmtFetchBegin.StatementNo,
 P->Vals.StmtFetchBegin.BlockCnt);
 break;

 case NXEventStmtFetchEnd :
 fprintf(fp, "exit called @ statement fetch end: %d records.\n",
 P->Vals.StmtFetchEnd.Records);
 break;

 case NXEventReqFetchEnd :
 fprintf(fp, "exit called @ request fetch ends: \
Records exported: %d, Records rejected: %d\n",
 P->Vals.ReqFetchEnd.RecsExported,
 P->Vals.ReqFetchEnd.RecsRejected);
 break;

 case NXEventExportEnd :
 fprintf(fp, "exit called @ export ends: \
Records exported: %d, Records rejected: %d\n",
 P->Vals.ExportEnd.RecsExported,
 P->Vals.ExportEnd.RecsRejected);
 break;
 }
 fclose(fp);
 return(0);
}

Teradata FastExport Reference 175

Appendix C: INMOD, OUTMOD and Notify Exit Routine Examples
Windows
176 Teradata FastExport Reference

APPENDIX D

User-Defined-Types
and User-Defined-Methods

This appendix provides information on User-Defined-types (UDFs) and
User-Defined-Methods (UDMs):

• User-Defined-Types and User-Defined-Methods

• User-Defined-Methods (UDMs)

• Creating UDTs with FastExport

• Inserting and Retrieving UDTs with Client Products

• External Types

• Inserting UDTs with FastExport

• Retrieving UDTs with FastExport

• Retrieving UDT Metadata with FastExport

User-Defined-Types and User-Defined-Methods

This section provides a brief overview of how Teradata Database client products support user-
defined custom data types known as User-Defined Types (UDTs), and user-defined custom
functions known as User-Defined Methods (UDMs).

• User-Defined Types (UDTs)

• User-Defined Methods (UDMs)

For more in depth information on using UDTs and UDMs see, Introduction to Teradata, B035-
1091-mmxA, SQL Reference, UDF, UDM and External Stored Procedure Programming, B035-
1147-mmxA and SQL Fundamentals, B035-1141-mmxA.

User-Defined Types (UDTs)

UDTs can be created to provide representations of real world entities within the Teradata
Database. Choosing a set of UDTs which closely matches the entities encountered in a given
business can yield a system which is easier to understand and hence easier to maintain.
Support for UDTs and UDMs integrates the power of object-oriented technology directly into
the Teradata Database.
Teradata FastExport Reference 177

Appendix D: User-Defined-Types and User-Defined-Methods
User-Defined-Types and User-Defined-Methods
User-Defined-Methods (UDMs)

Teradata Database developer-created custom functions, which are explicitly connected to
UDTs are known as User-Defined-Methods (UDMs). All UDMs must reside on server.

UDMs can be used to create an interface to the UDT that is independent of the UDT's internal
representation. This makes it possible to later enhance a given UDT even in cases where the
internal representation of the UDT must be changed to support the enhancement, without
changing all of the database applications which use the UDT.

Creating UDTs with FastExport

Teradata FastExport cannot create a custom UDT.

Inserting and Retrieving UDTs with Client Products

A UDT can only exist on the Teradata Database server. Each UDT has an associated “from-sql
routine” and “to-sql routine”.

• Insert - The “to-sql routine” constructs a UDT value from a pre-defined type value. The
“to-sql routine” is automatically invoked when inserting values from a client system into a
UDT on the Teradata Database server.

• Retrieve - The “from-sql routine” generates a pre-defined type value from a UDT. The
“from-sql routine” is automatically invoked when a UDT is retrieved from the Teradata
Database server to a client system.

External Types

The “from-sql routine” and the “to-sql routine” create a mapping between a UDT and a pre-
defined type. This pre-defined type is called the external type of a UDT. A client application
only deals with the external type; it does not deal with UDT value directly.

External Type Example

For example, if the following conditions exist:

• UDT named FULLNAME exists

• The external type associated with FULLNAME is VARCHAR(46)

Then, during an retrieve of FULLNAME values, the Teradata Database server converts the
values from FULLNAME values to VARCHAR(46) values by invoking the “from-sql routine”
associated with the FULLNAME UDT.

Note: The client must expect to receive the data in the same format as it receives
VARCHAR(46) values.

Similarly, when values are provided by the client for insert into a FULLNAME UDT, the client
must provide values in the same way it would provide values for a VARCHAR(46) field. The
Teradata Database server will convert the values from VARCHAR(46) to FULLNAME values
using the “to-sql routine” associated with the FULLNAME UDT.
178 Teradata FastExport Reference

Appendix D: User-Defined-Types and User-Defined-Methods
User-Defined-Types and User-Defined-Methods
Inserting UDTs with FastExport

UDTs cannot be inserted with FastExport.

Retrieving UDTs with FastExport

The Teradata FastExport utility can retrieve values from tables containing UDT columns in
the same manner as is done for other tables.

If the select-list of the SELECT statement used in the Teradata FastExport job contains a UDT
expression, the Teradata Database server automatically converts the UDT data to its external
type before returning the data to the Teradata FastExport utility.

As such, the data written to the output location referenced by the “.RETRIEVE” command
will be in the external type associated with the UDTs.

Retrieving UDT Metadata with FastExport

UDT Metadata cannot be retrieved with FastExport.
Teradata FastExport Reference 179

Appendix D: User-Defined-Types and User-Defined-Methods
User-Defined-Types and User-Defined-Methods
180 Teradata FastExport Reference

Glossary

Numeric

24x7 Lights Out Operations: The use of Systems Management tools to ensure the reliable
movement and update of data from operational systems to analytical systems.

2PC: Two-Phase Commit

A

abend: Abnormal END of task. Termination of a task prior to its completion because of an
error condition that cannot be resolved by the recovery facilities that operate during
execution.

ABORT: In Teradata SQL, a statement that stops a transaction in progress and backs out
changes to the database only if the conditional expression associated with the abort statement
is true.

Access Lock: A lock that allows selection of data from a table that may be locked for write
access. The Teradata MultiLoad utility maintains access locks against the target tables during
the Acquisition Phase.

Access Module: A software component that provides a standard set of I/O functions to
access data on a specific device.

Access Module Processor (AMP): A virtual processor that receives steps from a parsing
engine (PE) and performs database functions to retrieve or update data. Each AMP is
associated with one virtual disk, where the data is stored. An AMP manages only its own
virtual disk and not the virtual disk of any other AMP.

access right: A user’s right to perform the Teradata SQL statements granted to him against a
table, database, user, macro, or view. Also known as privilege.

account: The distinct account name portion of the system account strings, excluding the
performance group designation. Accounts can be employed wherever a user object can be
specified.

Acquisition Lock: A lock that is a flag in the table header that effectively rejects certain types
of Teradata SQL access statements. An acquisition lock allows all concurrent DML access and
the DROP DDL statement, and rejects DDL statements other than DROP.

Acquisition Phase: Responsible for populating the primary data subtables of the work
tables. Data are received from the host, converted into internal format, and inserted into the
work tables. The work tables will be sorted at the end of the Acquisition Phase and prior to the
Application Phase.
Teradata FastExport Reference 181

Glossary
action definition: A logical action consisting of a single physical action and related
attributes.

active data warehouse (ADW): An active data warehouse provides information that enables
decision-makers within an organization to manage customer relationships quickly, efficiently
and proactively. Active data warehousing is about integrating advanced decision support with
day-to-day, even minute-to-minute decision making that increases quality which encourages
customer loyalty and thus secures an organization's bottom line. The market is maturing as it
progresses from first-generation "passive" decision-support systems to current- and next-
generation "active" data warehouse implementations.

Active Database: Active database systems integrate event-based rule processing with
traditional database functionality. The behavior of the database is achieved through a set of
Event-Condition-Action rules associated with the database. When an event is detected the
relevant rules fire. Firing of a rule implies evaluating a condition on the database and carrying
out the corresponding action. An active database system derives its power from the variety of
events it can respond to and the kind of actions it can perform in response.

Ad Hoc Query: Any query that cannot be determined prior to the moment the query is
issued.

administrator: A special user responsible for allocating resources to a community of users.

Aggregation: Used in the broad sense to mean aggregating data horizontally, vertically, and
chronologically.

all joins: In Teradata SQL, a join is a SELECT operation that allows you to combine
columns and rows from two or more tables to produce a result. Join types restricted by DWM
are: inner join, outer join, merge join, product join, and all joins.

All joins are a combination of the above types, depending on how the user selects the
information to be returned. In addition to the four types listed above, selecting all joins may
include an exclusion join, nested join, and RowID join.

allocation group: (AG) A set of parameters that determine the amount of resources
available to the sessions assigned to a PG referencing a specific AG. Has an assigned weight
that is compared to other AG weights. An AG can limit the total amount of CPU used by
sessions under its control.

AMP: Access Module Processor (UNIX-based systems), a type of virtual processor (vproc)
that controls the management of the Teradata Database and the disk subsystem, with each
AMP being assigned to a virtual disk (vdisk). For more information, see the Introduction to
Teradata.

AMP worker task: (AWT) Processes (threads on some platforms) dedicated to servicing the
Teradata Database work requests. For each AMP vproc, a fixed number of AWTs are pre-
allocated during Teradata Database initialization. Each AWT looks for a work request to
arrive in the Teradata Database, services the request, and then looks for another. An AWT can
process requests of any work type. Each Teradata Database query is composed of a series of
work requests that are performed by AWTs. Each work request is assigned a work type
182 Teradata FastExport Reference

Glossary
indicating when the request should be executed relative to other work requests waiting to
execute.

Analytical Data Store: Useful in making strategic decisions, this data storage area maintains
summarized or historical data. This stored data is time variant, unlike operational systems
which contain real-time data. Information contained in this data store is determined and
collected based on the corporate business rules.

ANSI: American National Standards Institute. ANSI maintains a standard for SQL. For
information about Teradata compliance with ANSI SQL, see the SQL Fundamentals.

AP: Application Processor

APE: Alert Policy Editor. Use this Teradata Manager component to define alert policies:
create actions, set event thresholds, assign actions to events, and apply the policy to the
Teradata Database.

APH: Alternate Parcel Header.

Application Lock: A flag set in the table header of a target table indicating that the
Application Phase is in progress. An application lock allows all concurrent access lock select
access and the DROP DDL statement, and rejects all other DML and DDL statements.

Application Lifecycle: Includes the following three stages:

• process and change management

• analysis and design

• construction and testing

Application Phase: Responsible for turning rows from a work table into updates, deletes,
and inserts and applying them to a single target table.

APRC: Application Processor Reset Containment

API: Application Program Interface. An interface (calling conventions) by which an
application program accesses an operating system and other services. An API is defined at
source code level and provides a level of abstraction between the application and the kernel
(or other privileged utilities) to ensure the portability of the code.

An API can also provide an interface between a high level language and lower level utilities
and services written without consideration for the calling conventions supported by compiled
languages. In this case, the API may translate the parameter lists from one format to another
and the interpret call-by-value and call-by-reference arguments in one or both directions.

Architecture: A definition and preliminary design which describes the components of a
solution and their interactions. An architecture is the blueprint by which implementers
construct a solution which meets the users’ needs.

ASCII: American Standard Code for Information Interchange, a character set used
primarily on personal computers.
Teradata FastExport Reference 183

Glossary
Availability: A measure of the percentage of time that a computer system is capable of
supporting a user request. A system may be considered unavailable as a result of events such as
system failures or unplanned application outages.

B

B Tree: An indexing technique in which pointers to data are kept in a structure such that all
referenced data is equally accessible in an equal time frame.

BAR: Backup and restore; also referred to as Backup/Archive/Restore; a software and
hardware product set.

BLOB: An acronym for binary large object. A BLOB is a large database object that can be
anything that doesn’t require character set conversion. This includes MIDI, MP3, PDF,
graphics and much more. BLOBs can be up to 2 GB in size.

BTEQ: Teradata Basic Teradata Query facility. A utility that allows users on a workstation to
access data on a Teradata Database, and format reports for both print and screen output.

Business-Driven: An approach to identifying the data needed to support business activities,
acquiring or capturing those data, and maintaining them in a data resource that is readily
available.

bypass objects: Specific users, groups, and accounts can be set up to circumvent DWM
query management by declaring them to be bypassed. Basically, this turns off the DWM query
checking mechanism for all of the requests issued by those users and/or using those accounts.

C

Call-Level Interface Version 2 (CLIv2): A collection of callable service routines that
provide an interface to the Teradata Database. Specifically, CLI is the interface between the
application program and the Micro Teradata Directory Program (for network-attached
clients). CLI builds parcels that MTDP packages for sending to the Teradata Database using
the Micro Operating System Interface (for network-attached clients), and provides the
application with a pointer to each of the parcels returned from the Teradata Database.

Capture: The process of capturing a production data source.

cardinality: In set theory, cardinality refers to the number of members in the set. When
specifically applied to database theory, the cardinality of a table refers to the number of rows
contained in a table.

Change Data Capture: The process of capturing changes made to a production data source.
Change data capture is typically performed by reading the source DBMS log. It consolidates
units of work, ensures data is synchronized with the original source, and reduces data volume
in a data warehousing environment.

channel-attached: A mainframe computer that communicates with a server (for example, a
Teradata Database) through a channel driver.
184 Teradata FastExport Reference

Glossary
Character Set: A grouping of alphanumeric and special characters used by computer
systems to support different user languages and applications. Various character sets have been
codified by the American National Standards Institute (ANSI).

Checkpoint Rate: The interval between checkpoint operations during the Acquisition Phase
of a Teradata MultiLoad import task expressed as either the number of rows read from your
client system or sent to the Teradata Database, or an amount of time, in minutes.

CICS: Customer Information Control System

CLI: Call-Level Interface. The interface between the application program and the MTDP
(for network-attached clients) or TDP (for channel-attached clients). CLIv2 refers to version
two of the interface.

Client: A computer that can access the Teradata Database.

CLIv2: Call-Level Interface Version 2. The interface between the application program and
the MTDP (for network-attached clients) or TDP (for channel-attached clients).

CLIv2so: Call-Level Interface Version 2 Shared Object (CLIv2so); this program installs the
CLI libraries required by other utilities. When the CLIv2so program submits a request to a
Teradata Database, CLI Library components transform the request into Teradata Database
formats. The CLI Library sends requests to, and receives responses from, the Teradata
Database over a network.

client-server environment: The distribution of work on a LAN in which the processing of
an application is divided between a front-end client and a back-end server, resulting in faster,
more efficient processing. The server performs shared functions such as managing
communication and providing database services. The client performs individual user
functions such as providing customized interfaces, performing screen-to-screen navigation,
and offering help functions.

CMS: Conventional Monitor System

CLOB: An acronym for character large object. A CLOB is a pure character-based large
object in a database. It can be a large text file. HTML, RTF or other character-based file.
CLOBs can be up 2 GB in size. Also see BLOB and LOB.

Cluster: Logical, table-level archive whereby only those rows residing on specific AMPs, and
which are members of the specified cluster, are archived onto a single tape data set. This
allows multiple jobs to be applied for backup of large tables, to reduce the backup window.
This method is used to affect a parallel archive/restore operation via a “divide and conquer”
backup strategy.

COBOL: Common Business-Oriented Language

Coexistence System: A Teradata system running on mixed platforms

column: In the relational model of Teradata SQL, databases consist of one or more tables.
In turn, each table consists of fields, organized into one or more columns by zero or more
rows. All of the fields of a given column share the same attributes.
Teradata FastExport Reference 185

Glossary
consumer: In Teradata Parallel Transporter (Teradata PT), a type of operator that accepts
data from other operators and stores it in an external data store, such as a file, Teradata
Database table, and so on. A consumer operator consumes the data from the data stream’s
buffer.

COP: Communications Processor. One kind of interface processor (IFP) on the Teradata
Database. A COP contains a gateway process for communicating with workstations via a
network.

COP Interface: Workstation-resident software and hardware, and Teradata Database-
resident software and hardware, that allows workstations and the Teradata Database to
communicate over networks.

CPU: Central processing unit.

D

DASD: Direct access storage device (pronounced DAZ-dee). A general term for magnetic
disk storage devices that has historically been used in the mainframe and minicomputer (mid-
range computer) environments. When used, it may also include hard disk drives for personal
computers. A recent form of DASD is the redundant array of independent disks (RAID).

The "direct access" means that all data can be accessed directly in about the same amount of
time rather than having to progress sequentially through the data.

database: A related set of tables that share a common space allocation and owner. A
collection of objects that provide a logical grouping for information. The objects include,
tables, views, macros, triggers, and stored procedures.

Data Cardinality: Cardinality is a property of data elements which indicates the number of
allowable entries in the element. A data element such as gender only allows two entries (male
or female) and is said to possess low cardinality. Data elements for which many allowable
entries are possible, such as age or income are said to have high cardinality.

Data Definition Language (DDL): In Teradata SQL, the statements and facilities that
manipulate database structures (such as CREATE, MODIFY, DROP, GRANT, REVOKE, and
GIVE) and the Data Dictionary information kept about those structures. In the typical, pre-
relational data management system, data definition and data manipulation facilities are
separated, and the data definition facilities are less flexible and more difficult to use than in a
relational system.

Data Connector operator: A Teradata PT (producer- and consumer-type) operator that
emulates the Data Connector API within the Teradata PT infrastructure.

Data Dictionary: In the Teradata Database, the information automatically maintained
about all tables, views, macros, databases, and users known to the Teradata Database system,
including information about ownership, space allocation, accounting, and access right
relationships between those objects. Data Dictionary information is updated automatically
during the processing of Teradata SQL data definition statements, and is used by the parser to
obtain information needed to process all Teradata SQL statements.
186 Teradata FastExport Reference

Glossary
data loading: The process of loading data from a client platform to a Teradata Database
server.

data manipulation: In Teradata SQL, the statements and facilities that change the
information content of the database. These statements include INSERT, UPDATE. and
DELETE.

Data Mart: A type of data warehouse designed to meet the needs of a specific group of users
such as a single department or part of an organization. Typically a data mart focuses on a
single subject area such as sales data. Data marts may or may not be designed to fit into a
broader enterprise data warehouse design.

Data Mining: A process of analyzing large amounts of data to identify hidden relationships,
patterns, and associations.

Data Model: A logical map that represents the inherent properties of the data independent
of software, hardware, or machine performance considerations. The model shows data
elements grouped into records, as well as the association around those records.

Data Synchronization: The process of identifying active data replicates and ensuring that
data concurrency is maintained. Also known as data version synchronization or data version
concurrency because all replicated data values are consistent with the same version as the
official data.

Data Scrubbing: The process of filtering, merging, decoding, and translating source data to
create validated data for the data warehouse.

data streams: Buffers in memory for temporarily holding data. A data stream is not a
physical file; instead, it is more like a pipe (in UNIX or Windows), or a batch pipe in z/OS.

Data Warehouse: A subject oriented, integrated, time-variant, non-volatile collection of
data in support of management’s decision making process. A repository of consistent
historical data that can be easily accessed and manipulated for decision support.

DB2: IBM DATABASE 2

DBA: Database Administrator

DBQL: Database Query Log. DBQLs are a series of system tables created in the DBC
database during the Teradata Database installation process. They are used to track query
processing. See Database Administration to learn more about the DBQL.

DD: Data dictionary or data definition.

DDL: Data definition language, which supports manipulating database structures and the
Data Dictionary information kept about these structures.

DDL operator: The DDL operator is a stand-alone operator that allows you to perform any
necessary database routines prior to a load/apply job without having to use another utility
such as BTEQ. For example, you can create tables or indexes, or drop tables, as needed, before
starting a load/apply job. As a stand-alone operator, supporting only one instance, the DDL
operator does not send or retrieve data to or from a Teradata PT operator interface.
Teradata FastExport Reference 187

Glossary
DEFINE Statement: A statement preceding the INSERT statement that describes the fields
in a record before the record is inserted in the table. This statement is similar to the SQL
USING clause.

Delete Task: A task that uses a full file scan to remove a large number of rows from a single
Teradata Database table. A delete task is composed of three major phases: Preliminary,
Application, and End. The phases are a collection of one or more transactions that are
processed in a predefined order according to the MLOAD protocol.

delimiter: In Teradata SQL, a punctuation mark or other special symbol that separates one
clause in a Teradata SQL statement from another, or that separates one Teradata SQL
statement from another.

DIT: Directory Information Tree. A graphical display of an organization's directory
structure, sites, and servers, shown as a branching structure. The top-level (root) directory
usually represents the organization level.

DLL: Dynamic-link library. A feature of the Windows family of operating systems that
allows executable routines to be stored separately as files with .dll extensions and to be loaded
only when needed by a program.

DML: Data manipulation language. In Teradata SQL, the statements and facilities that
manipulate or change the information content of the database. These statements include
SELECT, INSERT, UPDATE, and DELETE.

domain name: A group of computers whose host names (the unique name by which a
computer is known on a network) share a common suffix, that is the domain name.

Drill down: A method of exploring detailed data that was used in creating a summary level
of data.

DSN: Digital Switched Network. The completely digital version of the PSTN.

Dual Active System: A dual active system is comprised of two active database systems that
operate in tandem and serve the needs of both the production and development
environments. Dual active systems virtually eliminate all down time and provide seamless
disaster recovery protection for critical users and applications.

Duplicate Row Check: A logic within the Teradata Database used to check for duplicate
rows while processing each primary data row for INSERTs and UPDATEs.

DWM: Dynamic Workload Manager. The product described in this document, which
manages access to the Teradata Database.

EBCDIC: Extended binary coded decimal interchange code. An IBM code that uses 8 bits to
represent 256 possible characters. It is used primarily in IBM mainframes, whereas personal
computers use ASCII.

E-CLI: Extended Call-Level Interface
188 Teradata FastExport Reference

Glossary
Error Tables: Tables created during the Preliminary Phase used to store errors detected
while processing a Teradata MultiLoad job. There are two error tables, ET and UV, that
contains errors found during the Acquisition Phase and Application Phase, respectively.

EOF: End of File

ETL: Extract, transform, and load

EUC: Extended UNIX Code. Extended UNIX Code (EUC) for Japanese and Traditional-
Chinese defines a set of encoding rules that can support from 1 to 4 character sets.

exclusion join: In Teradata SQL, a product join or merge join where only the rows that do
not satisfy (are NOT in) the conditional specified in the SELECT are joined.

Exclusive Lock: Supports the manual recovery procedure when a RELEASE MLOAD
statement is executed after a MultiLoad task has been suspended or aborted.

execution time frame: A period of time when DWM can execute scheduled requests that
are waiting to run.

Export operator: A Teradata PT producer-type operator that emulates some of the
functions of the FastExport utility in the Teradata PT infrastructure.

Extract: The process of copying a subset of data from a source to a target environment.

Exit Routines: Specifies a predefined action to be performed whenever certain significant
events occur during a Teradata MultiLoad job.

F

Failover: Failover is when Teradata QD switches from one connected system to another
when an error occurs. Many factors affect how failover occurs.

failure: Any condition that precludes complete processing of a Teradata SQL statement.
Any failure will abort the current transaction.

FastExport: Teradata FastExport utility. A program that quickly transfers large amounts of
data from tables and views of the Teradata Database to a client-based application.

FastExport OUTMOD Adapter operator: A Teradata PT consumer-type operator that acts
as a “wrapper” for Teradata FastExport utility OUTMOD routines, allowing you to use them
within the Teradata PT infrastructure.

FastLoad: Teradata FastLoad utility. A program that loads empty tables on the Teradata
Database with data from a network-attached or channel-attached client.

FastLoad INMOD Adapter operator: A Teradata PT producer-type operator that acts as a
“wrapper” for Teradata FastLoad utility INMOD routines, allowing you to use them within
the Teradata PT infrastructure.

field: The basic unit of information stored in the Teradata Database. A field is either null, or
has a single numeric or string value. See also column, database, row, table.
Teradata FastExport Reference 189

Glossary
FIFO: First In first out queue.

FIPS: Federal Information Processing Standards

filter operator: In Teradata PT, a type of operator that performs filtering on data en route
from other operators.

Flat File As a noun, an ASCII text file consisting of records of a single type, in which there is
no embedded structure information governing relationships between records.

As an adjective, describes a flattened representation of a database as single file from which the
structure could implicitly be rebuilt.

A particular type of database structure, as opposed to relational.

Foreign Key: The primary key of a parent data subject that is placed in a subordinate data
subject. Its value identifies the data occurrence in the parent data subject that is the parent of
the data occurrence in the subordinate data subject.

Formatted Records: See Records.

Function: User Defined Functions (UDF) are extensions to Teradata SQL. Users can write
UDFs to analyze and transform data already stored in their data warehouse in ways that are
beyond the functionality of Teradata’s native functions.

G

Gateway: A device that connects networks having different protocols.

global rule: Object Access and Query Resource rules can be specified as being global, that is,
they apply to all objects, and therefore to all requests. When a rule is specified as being global,
no query objects need be (or can be) associated with the rule because all objects are implicitly
included. Care should be taken defining a global access rule, as it causes all requests to be
rejected except those from the DBC user and any bypassed objects.

Globally Distributed Objects (GDO): A data structure that is shared by all of the virtual
processors in the Teradata Database system configuration.

graphical user interface (GUI): The use of pictures rather than just words to represent the
input and output of a program. A program with a GUI runs under a Windows operating
system. The GUI displays certain icons, buttons, dialog boxes in its windows on the screen
and the user controls it by moving a pointer on the screen (typically controlled by a mouse)
and selecting certain objects by pressing buttons on the mouse. This contrasts with a
command line interface where communication is by exchange of strings of text.

GSS: Generic Security Services. An application level interface (API) to system security
services. It provides a generic interface to services which may be provided by a variety of
different security mechanisms. Vanilla GSS-API supports security contexts between two
entities (known as "principals").
190 Teradata FastExport Reference

Glossary
H

heuristics: Statistics recommendations, based on general rules of thumb.

HOSI: Acronym for hash-ordered secondary index.

I

IPT: I/Os Per Transaction

import: This refers to the process of pulling system information into a program. To add
system information from an external source to another system. The system receiving the data
must support the internal format or structure of the data.

Import Task: A task that quickly applies large amounts of client data to one or more tables
or views on the Teradata Database. Composed of four major phases: Preliminary, Acquisition,
Application, and End. The phases are a collection of one or more transactions that are
processed in a predefined order according to the MLOAD protocol. An import task references
up to five target tables.

In-Doubt: A transaction that was in process on two or more independent computer
processing systems when an interruption of service occurred on one or more of the systems.
The transaction is said to be in doubt because it is not known whether the transaction was
successfully processed on all of the systems.

Information engineering: The discipline for identifying information needs and developing
information systems that produce messages that provide information to a recipient.
Information engineering is a filtering process that reduces masses of data to a message that
provides information.

INMOD: Input Module, a program that administrators can develop to select, validate, and
preprocess input data.

INMOD Routine: User-written routines that MultiLoad and other load/export utilities use
to provide enhanced processing functions on input records before they are sent to the
Teradata Database. Routines can be written in C language (for network-attached platforms),
or SAS/S, COBOL, PL/I or Assembler (for channel-attached platforms). A routine can read
and preprocess records from a file, generate data records, read data from other database
systems, validate data records, and convert data record fields.

inner join: In Teradata SQL, a join operation on two or more tables, according to a join
condition, that returns the qualifying rows from each table.

instance: In object-oriented programming, refers to the relationship between an object and
its class. The object is an instance of the class. In Teradata PT, an instance is an occurrence of
a fully defined Teradata PT operator, with its source and target data flows, number of sessions,
etc. Teradata PT can process multiple instances of operators.

interface processor (IFP): Used to manage the dialog between the Teradata Database and
the host. Its components consist of session control, client interface, the parser, the dispatcher,
Teradata FastExport Reference 191

Glossary
and the BYNET. One type of IFP is a communications processor (COP). A COP contains a
gateway process for communicating with workstations via a network.

Intermediary: A computer software process written by a third party which interfaces to one
or more Teradata servers and initiates a change data capture or change data apply operation
with replication services.

internet protocol (IP): Data transmission standard; the standard that controls the routing
and structure of data transmitted over the Internet.

interval histogram: Interval histograms are a form of synopsis data structure. A synopsis
data structure is a data structure that is substantially smaller than the base data it represents.
Interval histograms provide a useful statistical profile of attribute values that characterize the
properties of that raw data. The Teradata Database uses interval histograms to represent the
cardinalities and certain other statistical values and demographics of columns and indexes for
all-AMPs sampled statistics and for full-table statistics. Each histogram is composed of a
maximum of 100 intervals.

I/O: Input/output.

ISO: International Standards Organization

J

JIS: Japanese Industrial Standards specify the standards used for industrial activities in
Japan. The standardization process is coordinated by Japanese Industrial Standards
Committee and published through Japanese Standards Association.

Job Script: A job script, or program, is a set of MultiLoad commands and Teradata SQL
statements that make changes to specified target tables and views in the Teradata Database.
These changes can include inserting new rows, updating the contents of existing rows, and
deleting existing rows.

join: A select operation that combines information from two or more tables to produce a
result.

L

LAN: Local Area Network. LANs supported by Teradata products must conform to the
IEEE 802.3 standard (Ethernet LAN).

Least Used: Lease used (-lu) in a command line parameter that tells Teradata QD to route
queries to the least used database.

Load operator: A Teradata PT consumer-type operator that emulates some of the functions
of the FastLoad utility in the Teradata PT infrastructure.

LOB: An acronym for large object. A large object is a database object that is large in size.
LOBs can be up to 2 gigabytes. There are two types of LOBs, CLOBs and BLOBs. CLOBs are
character-based objects, BLOBs are binary-based objects.
192 Teradata FastExport Reference

Glossary
Locks: FastLoad automatically locks any table being loaded and frees a lock only after an
END LOADING statement is entered. Therefore, access to a table is available when FastLoad
completes.

log: A record of events. A file that records events. Many programs produce log files. Often
you will look at a log file to determine what is happening when problems occur. Log files have
the extension “.log”.

log stream: A log stream is a series of log messages defined in one message catalog and
initiated from one originator. One originator may initiate several log streams (for example, if
there are multiple operators in one originator).

logical action: A named action that is defined on the Alert Policy Editor's Actions tab.
Logical actions can be assigned to events in the alert policy.

Logical Data Model: A data model that represents the normalized design of data needed to
support an information system. Data are drawn from the common data model and
normalized to support the design of a specific information system.

Actual implementation of a conceptual module in a database. It may take multiple logical data
models to implement one conceptual data model.

loner value: A value that has a frequency greater than the total number of table rows
divided by the maximum interval times 2.

M

MAPI: Messaging Application Programming Interface. A set of Microsoft-defined functions
and interfaces that support E-mail capabilities.

macro: a file that is created and stored on the Teradata Database, and is executed in
response to a Teradata SQL EXECUTE statement

merge join: In Teradata SQL, the type of join that occurs when the WHERE conditional of a
SELECT statement causes the system first to sort the rows of two tables based on a join field
(specified in the statement), then traverse the result while performing a merge/match process.

Metadata: Data about data. For example, information about where the data is stored, who is
responsible for maintaining the data, and how often the data is refreshed.

methods: In object-oriented programming, methods are the programming routines by
which objects are manipulated.

NFS: Network file system.

MIB: Management Information Base

MOSI: Micro Operating System Interface. A library of routines that implement operating
system dependent and protocol dependent operations on the workstation.

MTDP: Micro Teradata Director Program. A library of routines that implement the session
layer on the workstation. MTDP is the interface between CLI and the Teradata Database.
Teradata FastExport Reference 193

Glossary
MPP: Massively Parallel Processing

multi-threading: An option that enables you to speed up your export and import
operations with multiple connections.

MultiLoad: Teradata MultiLoad. A command-driven utility that performs fast, high-
volume maintenance functions on multiple tables and views of the Teradata Database.

Multiset Tables: Tables that allow duplicate rows.

MVS (Multiple Virtual Storage): One of the primary operating systems for large IBM
computers.

N

name: A word supplied by the user that refers to an object, such as a column, database,
macro, table, user, or view.

nested join: In Teradata SQL, this join occurs when the user specifies a field that is a unique
primary index on one table and which is in itself an index (unique/non-unique primary or
secondary) to the second table.

Network: In the context of the Teradata Database, a LAN (see LAN).

network attached: A computer that communicates over the LAN with a server (for
example, a Teradata Database).

NIC: Network Interface Card.

NO REWIND: A tape device definition that prevents a rewind operation at either file open
or file close. NO REWIND allows a program to access multiple files on a tape by leaving the
tape positioned at the end of the current file at close, thus allowing the subsequent file to be
easily accessed by the next open.

notify exit: A user-defined exit routine that specifies a predefined action to be performed
whenever certain significant events occur during a Teradata PT job.

For example, by writing an exit in C (without using CLIv2) and using the NotifyExit attribute
in an operator definition, you can provide a routine to detect whether a Teradata PT job
succeeds or fails, how many records were loaded, what the return code is for a failed job, and
so on.

null: The absence of a value for a field.

Nullif Option: This option allows the user to null a column in a table under certain
conditions; it is only used in conjunction with DEFINE statements.

NUPI: Non-unique primary index; an NUPI is typically assigned to minor entities in the
database.

NUSI: Non-unique secondary index; an NUSI is efficient for range query access, while a
unique secondary index (USI) is efficient for accessing a single value.
194 Teradata FastExport Reference

Glossary
O

object: In object-oriented programming, a unique instance of a data structure defined
according to the template provided by its class. Each object has its own values for the variables
belonging to its class and can respond to the messages, or methods, defined by its class.

object access rule: An Object Access filter allows you to define the criteria for limiting
access to issuing objects and/or query objects. Queries that reference objects associated with
the rule (either individually or in combination) during the specified dates and times are
rejected. Global rules are not applicable for this type.

object definition: The details of the structure and instances of the objects used by a given
query. Object definitions are used to create the tables, views, and macros, triggers, join
indexes, and stored procedures in a database.

ODBC: (Open Database Connectivity) Under ODBC, drivers are used to connect
applications with databases. The ODBC driver processes ODBC calls from an application, but
passes SQL requests to the Teradata Database for processing.

ODBC operator: A Teradata PT producer-type operator that enables universal open data
access with many ODBC-compliant data sources, including Oracle, SQL Server, DB2, and so
on. The ODBC operator runs on all Teradata PT supported platforms. It reads data close to
the sources, and then feeds the data directly to the Teradata Database without the need of an
intermediate staging platform.

OLTP: (On-Line Transaction Processing) Processing that supports the daily business
operations. Also known as operational processing.

operator routine: In object-oriented programming, refers to a function that implements a
method.

The terms operator routine and operator function may be used interchangeably.

OS/VS Operating System/Virtual Storage

OTB: Open Teradata Backup; a product set consisting of OTB-Veritas, OTB-BakBone, and
others; Teradata backup products for MP-RAS/UNIX, NT and Windows platforms.

outer join: In Teradata SQL, an extension of an inner join operation. In addition to
returning qualifying rows from tables joined according to a join condition (the inner join), an
outer join returns non-matching rows from one or both of its tables. Multiple tables are
joined two at a time.

owner: In Teradata SQL, the user who has the ability to grant or revoke all access rights on a
database to and from other users. By default, the creator of the database is the owner, but
ownership can be transferred from one user to another by the GIVE statement.

P

parameter: A variable name in a macro for which an argument value is substituted when
the macro is executed.
Teradata FastExport Reference 195

Glossary
parser: A program executing in a PE that translates Teradata SQL statements entered by a
user into the steps that accomplish the user’s intensions.

parsing engine (PE): An instance (virtual processor) of the database management session
control, parsing, and dispatching processes and their data context (caches).

Paused MultiLoad Job: A job that was halted, before completing, during the Acquisition
Phase of the Teradata MultiLoad operation. The paused condition can be intentional, or the
result of a system failure or error condition.

PDE: Parallel Database Extensions

peak perm: Highest amount of permanent disk space, in bytes, used by a table.

performance groups: A performance group is a collection of parameters used to control
and prioritize resource allocation for a particular set of Teradata Database sessions within the
Priority Scheduler. Every Teradata Database session is assigned to a performance group
during the logon process. Performance groups are the primary consideration in partitioning
the working capacity of the Teradata Database. To learn more about performance groups, see
the Priority Scheduler section of Utilities.

performance periods: A threshold or limit value that determines when a session is under
the control of that performance period. A performance period links PGs/Teradata Database
sessions under its control to an AG that defines a scheduling strategy. A performance period
allows you to change AG assignments based on time-of-day or resource usage.

Physical Data Model: A data model that represents the denormalized physical
implementation of data that support an information system. The logical data model is
denormalized to a physical data model according to specific criteria that do not compromise
the logical data model but allow the database to operate efficiently in a specific operating
environment.

Pipeclient: A command line program used to send commands to Teradata Query Director.
The programs uses named pipes formatting.

Primary server: A Teradata server in which client applications execute transactions through
use of Teradata SQL or utilities such as Teradata MultiLoad and update the tables of one or
more replication groups. The changes are captured by replication services and given to an
intermediary connected to the server.

priority definition set: A collection of data that includes the resource partition,
performance group, allocation group, performance period type, and other definitions that
control how the Priority Scheduler manages and schedules session execution.

product join: In Teradata SQL, the type of join that occurs when the WHERE conditional
of a SELECT statement causes the Teradata Database system to compare all qualifying rows
from one table to all qualifying rows from the other table. Because each row of one table is
compared to each row of another table, this join can be costly in terms of system performance.

Note that product joins without an overall WHERE constraint are considered unconstrained
(Cartesian). If the tables to be joined are small, the effect of an unconstrained join on
196 Teradata FastExport Reference

Glossary
performance may be negligible, but if they are large, there may be a severe negative effect on
system performance.

profiles: A profile is a set of parameters you assign to a user, group of users, or an account
that determines what scheduling capabilities are available and how your Teradata Query
Scheduler scheduled requests server handles their scheduled requests.

physical action: A basic action type, such as <Send a Page>, <Send an E-Mail>, and so on.
Physical actions must be encapsulated by logical actions in order to be used in the alert policy.

PIC: Position independent code

PIPC: Parallel InterProcess Communication. It is a software component that provides
messaging protocols and parallelization primitives for Teradata PT to launch and execute
parallel applications across the enterprise.

Pipeclient: A command line program used to send commands to Teradata Query Director.
The program uses named pipes formatting.

PL/I: Programming Language/1, a programming language supported for MultiLoad
development.

PMPC: Performance Monitor and Production Controls

PP2: Preprocessor2

PPP: Point-to-Point Protocol

Primary Key: A set of one or more data characteristics whose value uniquely identifies each
data occurrence in a data subject. A primary key is also known as a unique identifier.

privilege: A user’s right to perform the Teradata SQL statements granted to him against a
table, database, user, macro, or view. Also known as access right.

procedure: Short name for Teradata stored procedure. Teradata provides Stored Procedural
Language (SPL) to create stored procedures. A stored procedure contains SQL to access data
from within Teradata and SPL to control the execution of the SQL.

production system: A database used in a live environment. A system that is actively used for
day-to-day business operations. This differs from a test or development system that is used to
create new queries or test new features before using them on the production system.

Protocol: The rules for the format, sequence and relative timing of messages exchanged on a
network.

Q

query analysis: A feature that estimates the answer set size (number of rows) and processing
time of a SELECT type query.

Query Capture Database (QCD): A database of relational tables that store the steps of any
query plan captured by the Query Capture Facility (QCF).
Teradata FastExport Reference 197

Glossary
Query Capture Facility (QCF): Provides a method to capture and store the steps from any
query plan in a set of predefined relational tables called the Query Capture Database (QCD).

query: A Teradata SQL statement, particularly a SELECT statement.

Query Director: A Teradata client application used to balance sessions between systems
according to user provided algorithms.

query management: The primary function of DWM is to manage logons and queries. This
feature examines logon and query requests before they are dispatched for execution within the
Teradata Database, and may reject logons, and may reject or delay queries. It does this by
comparing the objects referenced in the requests to the types of DBA-defined rules.

Query Resource filter: A Query Resource filter allows you to define the criteria for limiting
resource usage associated with queries. You can define resource criteria such as:

• Row count

• Processing time

• No joins permitted

• No full table scans permitted

Queries that are estimated to meet or exceed the limits for the rule during the specified dates
and times are rejected. You may define global rules for this type.

Query Session Utility: A separate utility program used to monitor the progress of your
MultiLoad job. It reports different sets of status information for each phase of your job.

R

random AMP sample (RAS): An arbitrary sample from an Access Module Processor
(AMP). These are samples of the tables in a query or all of the tables in a given database. Also
known as RAS.

RDBMS (Relational Database Management System): A database management system in
which complex data structures are represented as simple two-dimensional tables consisting of
columns and rows. For Teradata SET, RDBMS is referred to as “Teradata Database.”

Records: When using the Teradata MultiLoad utility, both formatted and unformatted
records are accepted for loading. A formatted record, in the Teradata Database world, consists
of a record created by a Teradata Database utility, such as BTEQ, where the record is packaged
with begin- and end-record bytes specific to the Teradata Database. Unformatted records are
any records not originating on a Teradata Database, such as Lotus 1-2-3 files. These files
contain records that must be defined before loading onto the Teradata Database.

recursive query: A named query expression that is allowed to reference itself in its own
definition, giving the user a simple way to specify a search of a table using iterative self-join
and set operations. Use a recursive query to query hierarchies of data. Hierarchical data could
be organizational structures such as department and sub-department, forums of discussions
such as posting, response, and response to response, bill of materials, and document
hierarchies.
198 Teradata FastExport Reference

Glossary
Replication Group: A set of tables for which either data changes are being captured on a
primary server or applied on a subscriber server.

Replication Services: a set of software functions implemented in the Teradata server that
interact with an intermediary to capture or apply change data to the tables of a replication
group.

request: In host software, a message sent from an application program to the Teradata
Database.

resource partition: A collection of prioritized PGs related by their users’ associations. Has
an assigned weight that determines the proportion of resources available to that partition
relative to the other partitions defined for that Teradata Database.

Restart Log Table: One of four restart tables the Teradata MultiLoad utility creates that are
required for restarting a paused Teradata MultiLoad job.

Restoration Lock: A flag set in the table header of a target table indicating that the table was
aborted during the Application Phase and is now ready to be restored. A limited set of
operations can be done on the table: Delete All, Drop Fallback, Drop Index, Drop Table, and
Select with access lock. No Teradata MultiLoad restart will be allowed on a table with a
Restoration Lock.

result: The information returned to the user to satisfy a request made of the Teradata
Database.

results table/file: In the Schedule Request environment, a results table or file is a database
table or a Windows file into which result data for a schedule request that is not self-contained
are stored.

results file storage: A symbolic name to a root directory where scheduled requests results
are stored. You map a file storage location to a Windows root directory where results are
stored.

RowID join: In Teradata SQL, this join occurs when one of the join tables has a non-unique
primary index constant, and another column of that table matches weakly with a non-unique
secondary index column of the second table.

rule: Rules are the name given to the method used by DWM to define what requests are
prohibited from being immediately executed on the Teradata Database. That is, the rules
enforced by DWM provide the Query Management capabilities.

row: Whether null or not, that represent one entry under each column in a table. The row is
the smallest unit of information operated on by data manipulation statements.

RSG: Relay Services Gateway. A virtual processor residing on a node in which the
replication services software will execute.

RT: Response Time

RTF: Rich Text File
Teradata FastExport Reference 199

Glossary
run file: A script that is not contained within the SYSIN file, but rather executed through
use of the .RUN BTEQ command.

S

scheduled requests: The capability to store scripts of SQL requests and execute them at a
scheduled later time.

schema: Schemas are used to identify the structure of the data. Producers have an output
schema, to define what the source data will look like in the data stream. Consumers have an
input schema, to define what will be read from the data stream. If the input and output
schemas are the same, you only define the schema once.

script: A file that contains a set of BTEQ commands and/or SQL statements.

Security token: A binary string generated by a server when a replication group is created or
altered that must be input to secure a change data capture or apply operation.

separator: A character or group of characters that separates words and special symbols in
Teradata SQL. Blanks and comments are the most common separators.

server: A computer system running the Teradata Database. Typically, a Teradata Database
server has multiple nodes, which may include both TPA and non-TPA nodes. All nodes of the
server are connected via the Teradata BYNET or other similar interconnect.

session: In client software, a logical connection between an application program on a host
and the Teradata Database that permits the application program to send one request to and
receive one response from the Teradata Database at a time.

skew: This value (which is only available in V2R4 and above) is calculated based on a single
Database collection interval. If the Session Collection rate is 60, then the skew is calculated for
a 60-second period.

The value is calculated using 'current' data values. For example, the Max CPU used during the
past 60 seconds relative to the Average used over that same 60 seconds:

skew = 100 * (1 - avg / max)

SMP: Symmetric Multi-Processing

SNMP: Simple Network Management Protocol. See the SNMP FAQ: http://www.faqs.org/
faqs/snmp-faq/

Sockclient: A command line program used to send commands to Teradata Query Director.

Source Database: The database from which data will be extracted or copied into the Data
Warehouse.

SQL: Structured Query Language. An industry-standard language for creating, updating
and, querying relational database management systems. SQL was developed by IBM in the
1970s for use in System R. It is the de facto standard as well as being an ISO and ANSI
standard. It is often embedded in general purpose programming languages.
200 Teradata FastExport Reference

Glossary
Programming language used to communicate with the Teradata Database.

SSO: Single sign-on, an authentication option that allows users of the Teradata Database on
Windows 2000 systems to access the Teradata Database based on their authorized network
usernames and passwords. This feature simplifies the procedure requiring users to enter an
additional username and password when logging on to Teradata Database via client
applications.

Star Schema: A modeling scheme that has a single object in the middle connected to a
number of objects around it radially.

statement: A request for processing by the Teradata Database that consists of a keyword
verb, optional phrases, operands and is processed as a single entity.

statistics: These are the details of the processes used to collect, analyze, and transform the
database objects used by a given query.

stored procedure: Teradata Version 2 Release 4 and later supports stored procedures. A
stored procedure is a combination of SQL statements and control and conditional handling
statements that run using a single call statement.

Subscriber server: A Teradata server in which changes captured from a primary server by
an intermediary are applied to tables that duplicate those of the primary. Replication services
executing on the servers provide the capture and apply functions.

supervisory user: In Data Dictionary, a user who has been delegated authority by the
administrator to further allocate Teradata Database resources such as space and the ability to
create, drop, and modify users within the overall user community.

T

table: A set of one or more columns with zero or more rows that consist of fields of related
information.

Target Database: The database in which data will be loaded or inserted.

Target table: A user table where changes are to be made by an MLOAD task.

TCP/IP: Transmission Control Protocol/Internet Protocol.

TDDSMC: Teradata Database System Management Console that allows users to view and
perform maintenance activities on ARCMAIN backups that are stored in Tivoli Storage
Management.

TDPID: Teradata Director Program Identifier. The name of the Teradata Database being
accessed.

Teradata SQL: The Teradata Database dialect of the relational language SQL, having data
definition and data manipulation statements. A data definition statement would be a
CREATE TABLE statement and a data manipulation statement would be a data retrieval
statement (a SELECT statement).
Teradata FastExport Reference 201

Glossary
TDP: Teradata Director Program; TDP provides a high-performance interface for messages
communicated between the client and the Teradata system.

Target Level Emulation (TLE): Permits you to emulate a target environment (target
system) by capturing system-level information from that environment. The captured
information is stored in the relational tables SystemFE.Opt_Cost_Table and SystemFE.Opt_
RAS_Table. The information in these tables can be used on a test system with the appropriate
column and indexes to make the Optimizer generate query plans as if it were operating in the
target system rather than the test system.

test system: A Teradata Database where you want to import Optimizer-specific information
to emulate a target system and create new queries or test new features.

title: In Teradata SQL, a string used as a column heading in a report. By default, it is the
column name, but a title can also be explicitly declared by a TITLE phrase.

TPA: Trusted Parallel Application.

TOS: Teradata Operating System

TPM: Transactions Per Minute

Transport: The process of extracting data from a source, interfacing with a destination
environment, and then loading data to the destination.

transaction: A set of Teradata SQL statements that is performed as a unit. Either all of the
statements are executed normally or else any changes made during the transaction are backed
out and the remainder of the statements in the transaction are not executed. The Teradata
Database supports both ANSI and Teradata transaction semantics.

trigger: One or more Teradata SQL statements associated with a table and executed when
specified conditions are met.

TSM: Tivoli Storage Management; IBM’s storage management solution.

TTU: Teradata Tools and Utilities is a robust suite of tools and utilities that enables users
and system administrators to enjoy optimal response time and system manageability with
there Teradata system. Teradata Fast Export is included in Teradata Tools and Utilities.

tuple: In a database table (relation), a set of related values one for each attribute (column).
A tuple is stored as a row in a relational database management system. It is analogous to a
record in a non relational file.

Two Phase Commit: Two Phase Commit is the process by which a relational database
ensures that distributed transactions are performed in an orderly manner. In this system,
transactions may be terminated by either committing them or rolling them back.

type: An attribute of a column that specifies the representation of data values for fields in
that column. Teradata SQL data types include numerics and strings.
202 Teradata FastExport Reference

Glossary
U

UDF User Defined Functions

UDM User-Defined Methods. The database developer can create custom functions that are
explicitly connected to UDTs; these are known as UDMs. Functionalities directly applicable to
a UDT can be located within the UDMs associated with that UDT rather than being replicated
to all of the applications that use that UDT, resulting in increased maintainability.

UDT A custom data type, known as a user-defined type. By creating UDTs, a database
developer can augment the Teradata Database with data types having capabilities not offered
by Teradata predefined (built-in) data types. Use Teradata FastExport to export values from
tables containing UDT columns in the same manner as is done for other tables. If the select-list
of the SELECT statement used in the Teradata FastExport job contains a UDT expression, the
Teradata Database server automatically converts the UDT data to its external type before
returning the data to the Teradata FastExport utility.

Unformatted Records: See Records.

Unicode: A fixed-width (16 bits) encoding of virtually all characters present in all languages
in the world.

unique secondary index (USI): One of two types of secondary indexes. A secondary index
may be specified at table creation or at any time during the life of the table. It may consist of
up to 16 columns. To get the benefit of the index, the query has to specify a value for all
columns in the secondary index. A USI has two purposes: It can speed up access to a row
which otherwise might require a full table scan without having to reply on the primary index,
and it can be used to enforce uniqueness of a column or set of columns.

user: In Teradata SQL, a database associated with a person who uses the Teradata Database.
The database stores the person’s private information and accesses other Teradata Databases.

Update operator: A Teradata PT consumer-type operator that emulates some of the
functions of the Teradata MultiLoad utility in the Teradata PT infrastructure.

UPI: Unique primary index; a UPI is required and is typically assigned to major entities in
the database.

user: A database associated with a person who uses the Teradata Database. The database
stores the person’s private information and accesses other Teradata Databases.

user groups: A group of users can be specified within DWM as either as a collection of
individual users, or as all user names which satisfy a character string pattern (such as SALE*).
The Teradata concept of roles is not used to define user groups, as it applies to privileges. User
groups can generally be employed wherever an issuing object can be specified, and any
condition applied to a group implicitly applies to all users within that group.

UTF-8: In simple terms, UTF-8 is an 8 bit encoding of 16 bit Unicode to achieve an
international character representation.

In more technical terms, in UTF-8, characters are encoded using sequences of 1 to 6 octets.
The only octet of a sequence of one has the higher-order bit set to 0, the remaining 7 bits are
Teradata FastExport Reference 203

Glossary
used to encode the character value. UTF-8 uses all bits of an octet, but has the quality of
preserving the full US-ASCII range. The UTF-8 encoding of Unicode and UCS avoids the
problems of fixed-length Unicode encodings because an ASCII file encoded in UTF is exactly
same as the original ASCII file and all non-ASCII characters are guaranteed to have the most
significant bit set (bit 0x80). This means that normal tools for text searching work as expected.

UTF16 A 16-bit Unicode Translation Format.

V

value-ordered secondary index (VOSI): A non-unique secondary index (NUSI) can be
value ordered which means the NUSI can be sorted on the key values themselves rather than
on the corresponding hash codes. This is useful for range queries where only a portion of the
index subtable will be accessed. With a value-ordered NUSI, only those blocks in the NUSI
subtable that are within the range are scanned. It must be a number value, up to 4 bytes,
versus a longer character column. DATE is the most commonly used data type. The actual
data value is stored as part of the NUSI structure.

Varbyte: A data type that represents a variable-length binary string.

Varchar: A data type that represents a variable-length non-numeric character.

Vargraphic: A data type that represents a variable-length string of characters.

view: An alternate way of organizing and presenting information in a Teradata Database. A
view, like a table, has rows and columns. However, the rows and columns of a view are not
directly stored by the Teradata Database. They are derived from the rows and columns of
tables (or other views) whenever the view is referenced.

VM (Virtual Machine): One of the primary operating systems for large IBM computers.

VM/CMS Virtual Machine/Conversational Monitor System

W

workgroups: Workgroups represent collections of related scheduled request work for users,
user groups, or accounts. Each workgroup is assigned a maximum number of requests that
can be executing from that workgroup simultaneously thereby ensuring that requests for all
workgroups get a fair share of their scheduled work done within the execution time frames.

workload limits rule A Workload Limits rule allows you to limit the number of logon
sessions and all-AMP queries, as well as reject or delay queries when workload limits are
encountered. You can define which users, accounts, performance groups, or users within
performance groups that are associated with this type of rule.

Workstation: A network-attached client.

Work Table: A table created during the Preliminary Phase used to store intermediate data
acquired from the host during a Teradata MultiLoad task. These data will eventually be
applied to a target table.
204 Teradata FastExport Reference

Glossary
Write Lock: A write lock enables a single user to modify a table. The Teradata MultiLoad
utility maintains write locks against each target table during the Application Phase, and work
tables and error tables for each task transaction.

X

XML: XML is the eXtensible Markup Language -- a system created to define other markup
languages. For this reason, it can also be referred to as a metalanguage. XML is commonly
used on the Internet to create simple methods for the exchange of data among diverse clients.

Z

z/OS (MVS (Multiple Virtual Storage)): One of the primary operating systems for large
IBM computers.

z/VM (VM Virtual Machine and VM/CMS): One of the primary operating systems for
large IBM computers. Virtual Machine/Conversational Monitor System.
Teradata FastExport Reference 205

Glossary
206 Teradata FastExport Reference

Index

Symbols
& (ampersand) character, in variable substitution 41
* (asterisk character) as the fileid specification

ACCEPT command 65
DISPLAY command 76
ROUTE MESSAGES command 117
RUN FILE command 119

./ prefix
EXIT name specification, BEGIN EXPORT command 69
INMOD modulename specification, IMPORT command

100
OUTMOD modulename specification, EXPORT

command 79
@ character in OUTFILE fileid specifications 82

Numerics
2633 error message 48

A
abort 31, 181
ACCEPT command

defined 16
syntax 64

Access Module, name specification 79, 100
accounts

defined 181
acctid specification, LOGON command 111
acronyms 181
administrator, defined 182
all joins

defined 182
ALTER TABLE statement, Teradata SQL 18
alternate error file run-time parameter 24
ANSI/SQL DateTime data types

programming considerations 40
specifications, table of 89

ANSIDATE specification, DATEFORM command 74
API

defined 183
apostrophes, displaying in the text string, DISPLAY

command 75
ASCII

character set code 41
Assembler language INMOD routines

programming structure 51

AXSMOD
character set 44
option, EXPORT command 79
option, IMPORT command 100

B
-b run-time parameter 23
BEGIN EXPORT command

defined 17
syntax 67

BINARY format specification
EXPORT command 80

block size specifications, table of 83
BLOCKSIZE integer specification, EXPORT command 80
BRIEF

configuration file parameter 34, 35
run-time parameter 23

bypass objects
defined 184

C
C language

INMOD examples for UNIX 156
INMOD routine programming structure 51
notify exit parameters 158

character sets
AXSMOD 44
client system specifications 44
default 44
programming considerations 41
run-time parameters 44
supported 41
Teradata Database default 44
Unicode 26, 43
UTF16 26, 43
UTF8 26, 43

charpos specification
ACCEPT command 64
RUN FILE command 118

CHARSET configuration file parameter 34, 35
CHECKPOINT statement, Teradata SQL 18
CLIv2 error on your client system 33
COBOL language INMOD routine programming structure

51
COLLECT STATISTICS statement, Teradata SQL 18
command
Teradata FastExport Reference 207

Index
conventions 38
conditional expressions 38
operators 38
reserved words 39

commands
syntax, see individual commands

COMMENT statement, Teradata SQL 18
comments

programming considerations 40
using variable substitutions 41
using with Teradata SQL statements 41

compiling routine
HP-UX 162
IBM-AIX 164
LINUX 165
MP-RAS 161
SOLARIS 161

concurrent load utility tasks, programming considerations 48
conditional expressions 38
configuration file

and errors 36
contents 35
file name and location 35
optional specification 21
overriding internal utility defaults 35
parameters overridden by run-time parameters

BRIEF 34
CHARSET 24, 34
ERRLOG 24, 34
MAXSESS 24, 34
MINSESS 24, 34

processing 36
using 34

CONTINUEIF specification
LAYOUT command 105
with multibyte character sets 45

CREATE DATABASE statement, Teradata SQL 18
CREATE MACRO statement, Teradata SQL 18
CREATE TABLE statement, Teradata SQL 18
CREATE VIEW statement, Teradata SQL 18

D
data

file concatenation, programming considerations 48
type specification, changing

SET command 120
data dictionary, defined 186
data encryption

run-time option specification 28
data manipulation, defined 187
DATABASE statement, Teradata SQL 18
datadesc specification

FIELD command 46, 87

FILLER command 46, 94
DATAENCRYPTION

configuration file parameter 35
keyword

BEGIN EXPORT command 70
DATE system variables (&SYSDATE and &SYSDATE4) 39,

40
DATEFORM command

defined 16
syntax 74

DateTime specifications, table of 89
DAY system variable (&SYSDAY) 39, 40
dbname specification

LOGTABLE command 114, 115
with multibyte character sets 45

DBQL
defined 187

defined 181
DELETE DATABASE statement, Teradata SQL 18
DELETE statement, Teradata SQL 18
delimiters 40

defined 188
DISPLAY command

defined 16
syntax 75

DIT
defined 188

down AMP 33
DROP DATABASE statement, Teradata SQL 18
DROP specification, FIELD command 88
DWM

defined 188
DYNAMN entry point

for COBOL and PL/I INMOD routines 52
dynamn entry point

for C INMOD routines 52
for SAS/C INMOD routines 52

E
-e filename run-time parameter 24
EBCDIC character set codes 41
ECHO option, ROUTE MESSAGES command 116
ELSE command

defined 16
syntax 96

encryption of data
run-time option 28

END EXPORT command
defined 17
syntax 77

ENDIF command
defined 16
syntax 96
208 Teradata FastExport Reference

Index
entry points, for INMOD, OUTMOD, and notify exit
routines 52

env_var environment variable specification
ACCEPT command 64

ERRLOG configuration file parameter 34, 35
ERRLOG= filename run-time parameter 24
error messages file 35
errors

job script 33
software 33

EUC
defined 189

exclusion join
defined 189

execution time frame
defined 189

EXIT name specification, BEGIN EXPORT command 69
exponential operators, programming considerations 48
EXPORT command

defined 17
syntax 78

expressions, programming considerations 48

F
failures

defined 189
hardware 33

FastExport
description 13
invocation examples

for UNIX and Windows 135
for z/OS 131
for z/VM 129

involking 23
FASTLOAD format specification

EXPORT command 80
IMPORT command 101

FIELD command
defined 17
syntax 87

field, defined 189
fieldexpr specification, FIELD command 88
fieldname specification

FIELD command 87
FILLER command 94
with multibyte character sets 45

file size
maximum 47

fileid specifications
ACCEPT command 65
DISPLAY command 75
EXPORT command 78, 80
ROUTE MESSAGES command 116

RUN FILE command 118
usage rules for z/OS 65, 76, 82, 103, 117, 119

FILLER command
defined 17
syntax 94

FORMAT specification
EXPORT command 80
IMPORT command 101

G
GIVE statement, Teradata SQL 18
global rule

defined 190
GRANT statement, Teradata SQL 18
graphic constants, programming considerations 46
GRAPHIC data type specifications

programming considerations 46
GSS

defined 190

H
hardware

failures 33
hexadecimal form, programming considerations 48
HP-UX

compiling and linking routines 162

I
IBM-AIX

compiling and linking routines 164
IF command

conditional expression numeric results 96
defined 16
nesting 96
syntax 96

IGNORE charpos specification, RUN FILE command 118
IMPORT command

defined 17
syntax 98

in comments 40
INDICATORS specification, LAYOUT command 105
INFILE fileid specification, IMPORT command 99
infilename standard input file specification 25
INMOD modulename specification, IMPORT command 100
INMOD routines 49

addressing mode on z/VM and z/OS 53
compiling and linking 52, 160
definition 49
entry points 52
examples

using C on Windows 167
using PL/I on z/OS 148
Teradata FastExport Reference 209

Index
using SAS C on z/OS 153
FastExport utility interface 54
programming languages 50
programming structure 50
restart operations--Caution 55
rules and restrictions 52
sample programs

C language, for UNIX 156
inner join

defined 191
input text, delimiting 66
INSERT statement, Teradata SQL 18
integer specification, EXPORT command 80
INTEGERDATE specification, DATEFORM command 74
invocation examples

for UNIX and Windows
specifying a run file 135
specifying error logging 137
specifying multiple parameters 138
specifying reduced print output 136
specifying the character set 136

for z/OS
specifying error logging 133
specifying multiple parameters 134
specifying reduced print output 132
specifying the character set 132

for z/VM
specifying error logging 130
specifying multiple parameters 131
specifying reduced print output 129
specifying the character set 129

invoking FastExport 23

J
JIS

defined 192
job scripts

definition 59
errors 33
writing 59

join, defined 192

K
KANJI character set codes 41
KATAKANA character set codes 41

L
LAYOUT command

defined 17
syntax 104

layoutname specification
IMPORT command 101

LAYOUT command 104
with multibyte character sets 45

limit specifications, BEGIN EXPORT command 68
linking routine

HP-US 162
IBM-AIX 164
LINUX 165
MP-RAS 161
SOLARIS 161

LINUX
compiling and linking routines 165

LOGDATA command
syntax 107

LOGMECH command
syntax 108

LOGOFF command
defined 16
syntax 109
when permitted 110

logoff/disconnect messages, description 15
LOGON command

defined 17
example 113, 115
logon parameters 113
syntax 111
using with the LOGTABLE command 113, 114

LOGTABLE command
defined 17
example 113, 115
syntax 114
using with the LOGON command 113, 114

M
-M ’max-sessions command’ command specification 27
maximum

file size, programming considerations 47
sessions 27

MAXSESS configuration file parameter 34, 35
merge join

defined 193
minimum

sessions 27
MINSESS configuration file parameter 34, 35
minutes specification, BEGIN EXPORT command 68
MLSCRIPT fileid specification, EXPORT command 80
MODE specification, EXPORT command 79
MODIFY DATABASE statement, Teradata SQL 18
modulename specification

EXPORT command 79
IMPORT command 100

MP-RAS
compiling and linking routines 161

MSG stringt specification, BEGIN EXPORT command 69, 70
210 Teradata FastExport Reference

Index
multibyte character sets, programming considerations 45
multiple variables, coding 65

N
-N ’minsessions command’ command specification 27
name specification, BEGIN EXPORT command 69
name, defined 194
Named Pipes Access Module 100
nested comments 41
nested join

defined 194
network failure 33
nonrecoverable I/O error

I/O error 33
notify exit routines 49

addressing mode on z/VM and z/OS 53
compiling and linking 52, 160
definition 49
entry points 52
examples

using C on Windows 172
programming languages 50
programming structure 51
rules and restrictions 52
sample parameters 158

NOTIFY specification, BEGIN EXPORT command 69
null, defined 194
NULLIF nullexpr specification, FIELD command 88

O
Object Access filter

defined 195
OLE DB Access Module 79
operators 38
OS system variable (&SYSOS) 39
oscommand specification, SYSTEM command 122
outer join

defined 195
OUTFILE fileid specification, EXPORT command 78
outfilename standard output file specification 25
OUTLIMIT records specification, EXPORT command 80
OUTMOD modulename specification, EXPORT command

79
OUTMOD routines 49

addressing mode on z/VM and z/OS 53
compiling and linking 52
definition 49
entry points 52
examples

using C on Windows 170
using C on z/VM 142
using COBOL on z/VM 140

FastExport utility interface 56

input data
length pointer 57
record pointer 57

programming
languages 50
structure 51

restart operations--Caution 57
rules and restrictions 52

output data length pointer, OUTMOD routine interface 57
owner, defined 195

P
parameter list, FastExport-to-INMOD interface 55
parms specification, IMPORT command 101
parser, defined 196
parsing engine (PE), defined 196
password specification

LOGON command 111
with multibyte character sets 45

performance group
defined 196

PL/I language INMOD routines
programming structure 51

procedures
defined 197

product join
defined 196

product version numbers 3
profiles

defined 197
programming considerations

character set specifications 41
command conventions 38
comments 40
date and time variables 40
graphic constants 46
graphic data types 46
multibyte character sets 45
restrictions and limitations 47

programming structure
INMOD routines 50
notify exit routines 51
OUTMOD routines 51

Q
queries

defined 198
query analysis

defined 197
query management

defined 198
Query Resource filter

defined 198
Teradata FastExport Reference 211

Index
Query Session utility
used for FastExport reports 14

R
-r ’fastexport command’ command specification 28
RC system variable (&SYSRC) 39
record length specifications, table of 83
records specification, EXPORT command 80
reduced print output run-time parameter 23
RENAME statement, Teradata SQL 19
REPLACE MACRO statement, Teradata SQL 19
REPLACE VIEW statement, Teradata SQL 19
request, defined 199
reserved words 39
restart log table 115

maintaining 115
non-shareability 115
specifying 115

restart operations
INMOD routines--Caution 55
OUTMOD routines--Caution 57

restrictions and limitations 47
concurrent load tasks 48
data file concatenation 48
exponential operators 48
expressions 48
hexadecimal form 48
maximum file size 47

result, defined 199
results file storage

defined 199
results files

defined 199
results tables

defined 199
retcode specification, LOGOFF command 109
return codes 31, 48, 110
REVOKE statement, Teradata SQL 19
ROUTE MESSAGES command

default destinations 117
defined 17
syntax 116

row format, examples for z/VM, z/OS, and UNIX 139
row, defined 199
RowID join

defined 199
rule

defined 199
RUN FILE command

defined 17
executing 119
nesting 119
syntax 118

S
scheduled requests

defined 200
scripts

writing 59
separator, defined 200
sequence number, FastExport-to-INMOD interface 55
session

character set
AXSMOD 44

sessions
defined 200
maximum 27
minimum 27

SESSIONS limit specifications, BEGIN EXPORT command
68

SET command
defined 17
syntax 120

SET SESSION COLLATION statement, Teradata SQL 19
single sign-on 113
SLEEP minutes specification, BEGIN EXPORT command 68
software

errors 33
software releases

supported 3
SOLARIS

compiling and linking routines 161
source file record restrictions 65
SQL

defined 200
SSO

LOGON command
single sign-on 113

startpos specification
FIELD command 87
FILLER command 94

statement
defined 201

statement number pointer, OUTMOD routine interface 56
status codes

FastExport-to-INMOD interface 54
STATUS configuration file parameter 35
status reporting 14
stored procedures

defined 201
string specification, BEGIN EXPORT command 69, 70
supervisory user, defined 201
syntax

how to read 123
SYSTEM command

defined 17
syntax 122
212 Teradata FastExport Reference

Index
T
table format, examples for z/VM, z/OS, and UNIX 139
table names, with multibyte character sets 45
table, defined 201
task

status reporting 14
tdpid specification, LOGON command 112
Teradata Database restart 33
Teradata SQL statements, supported by FastExport 18
termination 31

control codes 48
return codes 110

TEXT format specification
EXPORT command 80

TEXT string specification, BEGIN EXPORT command 69
text string, DISPLAY command 75
TIME system variable (&SYSTIME) 39, 40
title, defined 202
tname specification, LOGTABLE command 114
transaction, defined 202
type, defined 202

U
Unicode

character sets 27, 43
UNIX

C language INMOD example 156
C language notify exit parameters 158
compiling and linking routines 160

UPDATE statement, Teradata SQL 19
user 203
user groups

defined 203
USER system variable (&SYSUSER) 40
username specification

LOGON command 112
with multibyte character sets 45

USING (parms) specification, IMPORT command 101
UTF16

character sets 27, 43
defined 204

UTF8
character sets 27, 43
defined 203

utility variables 76

V
var utility variable specifications

ACCEPT command 65
SET command 120

variables
declaring, SET command 120

in the IF conditional expression 96
number of, ACCEPT command 66
substitutions

ELSE and ENDIF commands 97
SET command 120
within comment strings 41

utility 76
VARTEXT format specification

IMPORT command 101
version numbers 3

W
workgroups

defined 204
workload limits rule

defined 204
write operations, conflicting on UNIX systems 75
writing job scripts 59
Teradata FastExport Reference 213

Index
214 Teradata FastExport Reference

	Preface
	Purpose
	Audience
	Supported Releases
	Prerequisites
	Changes to This Book
	Additional Information

	Table of Contents
	List of Tables
	Chapter 1 Overview
	FastExport Utility
	Description
	What it Does
	How it Works

	Operating Features and Capabilities
	Operating Modes
	Character Sets
	Task Status Reporting

	FastExport Commands
	FastExport Support Activity Commands
	FastExport Task Activity Commands
	Teradata SQL Statements

	FastExport Example

	Chapter 2 Using FastExport
	Invoking FastExport
	File Requirements
	Interactive Mode
	Batch Mode
	Run-time Parameters
	z/OS Example
	z/VM Example
	UNIX and Windows Examples

	Terminating FastExport
	Normal Termination
	Abort Termination

	Restarting a Paused FastExport Job
	Paused FastExport Jobs
	After a Job Script Error
	After Hardware Failures or Software Error Conditions
	After an AP Reset Condition

	Programming Considerations
	FastExport Configuration File
	Generated MultiLoad Script File
	FastExport Command Conventions
	Variables
	ANSI/SQL DateTime Specifications
	Comments
	Character Set Specification
	Graphic Data Types
	Graphic Constants
	Select Requests
	Restrictions and Limitations
	Termination Control Codes
	UNIX Signals

	Using INMOD, OUTMOD, and Notify Exit Routines
	Overview
	Programming Considerations for Using Routines
	FastExport/INMOD Routine Interface
	FastExport/OUTMOD Routine Interface
	FastExport/Notify Exit Routine Interface

	Writing a FastExport Job Script
	Definition

	Using Checkpoints in a Single Export Job

	Chapter 3 FastExport Commands
	Syntax Notes
	Object Name Restrictions
	Geospatial Data Restrictions
	ACCEPT
	BEGIN EXPORT
	DATEFORM
	DISPLAY
	END EXPORT
	EXPORT
	FIELD
	FILLER
	IF, ELSE, and ENDIF
	IMPORT
	LAYOUT
	LOGDATA
	LOGMECH
	LOGOFF
	LOGON
	LOGTABLE
	ROUTE MESSAGES
	RUN FILE
	SET
	SYSTEM

	Appendix A How to Read Syntax Diagrams
	Syntax Diagram Conventions
	Notation Conventions
	Paths
	Required Entries
	Optional Entries
	Strings
	Abbreviations
	Loops
	Excerpts
	Multiple Legitimate Phrases
	Sample Syntax Diagram
	Diagram Identifier

	Appendix B Invocation Examples
	z/VM
	Reduced Print Output (BRIEF) Parameter
	Character Set Selection (CHARSET) Parameter
	Error Logging (ERRLOG) Parameter
	Specify Multiple Parameters

	z/OS
	Reduced Print Output (BRIEF) Parameter
	Character Set Selection (CHARSET) Parameter
	Error Logging (ERRLOG) Parameter
	Specify Multiple Parameters

	UNIX and Windows
	Run File (-r) Parameter
	Reduced Print Output (-b) Parameter
	Character Set Selection (-c) Parameter
	Error Logging (-e) Parameter
	Specify Multiple Parameters

	Appendix C INMOD, OUTMOD and Notify Exit Routine Examples
	Table Format
	Row Format
	z/VM
	Generating a COBOL OUTMOD Routine
	Omit the Default Entry Point
	Create the Load Module
	Generate a C OUTMOD Routine
	Compile the OUTMOD Routine
	Link the Object File
	Execute the OUTMOD Routine
	FastExport Utility Directives
	z/VM Directives

	z/OS
	Generate a COBOL OUTMOD Routine
	Generate a PL/I INMOD Routine
	Generate a SAS/C OUTMOD Routine
	Execute the OUTMOD Routine

	UNIX
	C INMOD Example
	C Notify Exit Parameters
	Compile and Link Routines

	Windows
	Generating Routines

	Appendix D User-Defined-Types and User-Defined-Methods
	User-Defined-Types and User-Defined-Methods
	User-Defined Types (UDTs)
	User-Defined-Methods (UDMs)
	Creating UDTs with FastExport
	Inserting and Retrieving UDTs with Client Products
	External Types
	Inserting UDTs with FastExport
	Retrieving UDTs with FastExport
	Retrieving UDT Metadata with FastExport

	Glossary
	Index

