Deploying a Groundplex in Kubernetes

In this article

Overview

SnapLogic supports Kubernetes orchestration on your Groundplex instances. You can deploy Snaplex nodes in your Kubernetes environment by setting up a Helm Chart that defines the node configuration for discoverability in the Kubernetes environment. This article explains how you can deploy and configure SnapLogic Snaplex nodes in a Kubernetes environment and contains an attached Helm Chart that you can use.

The autoscaling solution described in the article Deploying a Groundplex in Kubernetes with Elastic Scaling is no longer available. You can configure your Groundplex to use autoscaling through Kubernetes-based metrics. Consult your CSM to learn more.

Workflow

Prerequisites

Downloading the Configuration File from SnapLogic Manager

  1. Open an existing Snaplex in the Org:

    1. Navigate to the target Snaplex in Manager.

    2. Click on the Snaplex name to display the Update Snaplex dialog.
      Alternatively, if none exists, Create a Snaplex. 

  2. On the Downloads tab, download the Configuration file using the option image-20240624-095938.png or use the API api/1/rest/public/snaplex/config/<path_to_groundplex> to download the slpropz file.

    update-snaplex.png

     

  3. Click Cancel to exit the dialog.

  4. Use the API to retrieve the information needed to configure a node on a Groundplex.
    GET https://{controlplane_path}/api/1/rest/public/snaplex/config/{plex_path}?{query_parameters}.
    An example would be similar to the path provided below: https://elastic.snaplogic.com/api/1/rest/public/snaplex/config/snaplogic/shared/MyGround

    1. Use the path retrieved from the API in the snaplogic_config_link parameter of the Helm chart. Learn more at Retrieve config info for a Groundplex and Download the slpropz configuration file

  5. Set the parameter snaplogic_secret in the Helm chart YAML file to the name of the Kubernetes secret you create, as described in the Deploy the Helm Chart section.

For a Zero Trust Kubernetes Installation, open up port TCP 443 and websockets connections for the sites mentioned below:
https://elastic.snaplogic.com
https://tcp.elastic.snaplogic.com
https://snaplogic-prod-sldb.s3.amazonaws.com
https://s3.amazonaws.com

Running the Snaplex with Org Credentials

You can associate Org admin credentials with the SnapLogic secret created when enabling enhanced encryption. This makes it easier to share the Snaplex service with your organization's users. The SnapLogic Org admin credentials and the enhanced encryption secret are in JSON format as key/value pairs.

  1. Generate a key and encode it for each value.
    NOTE: We recommend that you use Base64 to encode the values.

  2. To create the SnapLogic secret:

    1. Create the YAML file with the following two keys: username and password.

      Example YAML File

      apiVersion: v1 kind: Secret metadata: name: mysecret type: Opaque data: username: <Base64 username> password: <Base64 password>

       

      TIP: Run the following command to encode your username/password into the text of the secret:
      $ echo -n "snaplogic_username_or_password" | Base64

      IMPORTANT: If your password includes any of the following characters, you must escape the character with a backslash (\) in the string that you pass to the encoder:
      \ (backslash)
      $ (dollar sign)
      ' (apostrophe or single-quote)
      ` (backtick)
      " (double-quotes)
      & (ampersand)
      | (pipe symbol)
      ; (semicolon)
      ! (exclamation mark)
      For example, if your password is mypa$$word, pass the string mypa\$\$word to the Base64 encoder.

    2. Run the following command:

      $ kubectl apply -f snaplogic_secret.yaml

     

  3. (Optional) If Enhanced Encryption is enabled for your Org, create the Enhanced Encryption secret by running the following commands:
    $ kubectl create secret generic enhanced-encryption-secret --from-file=keystore_jks --from-file=keystore_pass
    $ kubectl apply -f enhanced_encryption_secret.yaml

  4. After the secret is created, delete the YAML file because it is no longer needed.

See the Kubernetes documentation regarding the management of the secret.

You can now deploy the Helm Chart.

Deploy the Helm chart

About the Helm Chart

The helm chart defines the values for your Groundplex nodes in your Kubernetes environment.

You can download the Helm Chart package, which contains the following:

  • values.yaml: This file is the helm chart.

  • templates folder: Boilerplate charts based on parameters.

  • Chart.yaml: This file contains metadata about the artifact repository.

Helm Chart Fields

The following list describes each field parameter in the values.yaml file:

Field

Description

Guidelines

Field

Description

Guidelines

Regular nodes count

Specifies the number of JCC deployed to run the SnapLogic container

If HPA is enabled, then the minReplicas and maxReplicas counts are used from values.yaml

FeedMaster nodes count

Specifies the number of FeedMaster Pods to deploy.

N/A

Docker image of SnapLogic Snaplex image

Specifies the repository where the image resides and the tag indicating the version of the image. Although you can specify a version of your Snaplex, we recommend that you enter the latest version for the most recently released SnapLogic build.

N/A

SnapLogic configuration link

Specifies the link to the SnapLogic JCC configuration file (also known as .slpropz).

N/A

SnapLogic Org admin credential

Specifies the secret (an encoded username and password) to authenticate the deployment.

N/A

Enhanced encryption secret

Specifies the secret (an additional encoded username and password) to authenticate the deployment, available only to the user.

N/A

CPU and memory limits for the nodes

Specifies the upper limits and requests for the CPU and memory resources. You can set these values for only the upper limits. The lower limits are system-defined and cannot be modified.

Limits: The maximum amount of resources (CPU and memory) that a container can consume.

Requests: The minimum amount of resources that a container needs to function properly.

This ensures that the container is always scheduled on a node that can fulfill its minimum requirements.

Default file ulimit and process ulimit

Specifies the number of possible open file descriptors and processes for the JCC containers.

The value should be greater than the number of slots configured for the node (Maximum Slots under the Snaplex's node properties).

If not set, then the node defaults will be used. (/etc/security/limits.conf).

Probes

Monitors the SnapLogic application.

 

Autoscaling

Sets autoscaling properties. Enabled to false by default. Contact SnapLogic CSM for recommendations for this setting.

The HorizontalPodAutoScaler is enabled by setting this property to true. Contact SnapLogic CSM for recommendations for this setting.

minReplicas

maxReplicas

minReplicas defines the minimum number of Pods that must be running.

maxReplicas defines the maximum number of Pods that can be scheduled on the node(s)

The general guideline is to start with 1:2 or 1:3 Pods per node.

targetAvgCPUUtilization

This is the average CPU utilization across all Pods. HPA will scale up or scale down Pods to maintain this average.

N/A

targetAvgMemoryUtilization

This parameter specifies the average memory utilization (as a percentage of the requested memory) that the HPA should maintain across all the replicas of a particular deployment or stateful set.

N/A

scaleDownStabilizationWindowSeconds

This parameter controls the amount of time the HPA waits (like a cool-down period) before scaling down the number of pods after a decreasein resource utilization.

N/A

Termination Grace Period Seconds

The time to shut down a node gracefully before it gets terminated.

N/A

IPv6

Enabled to False by default. You can enable IPv6 for your connections if your infrastructure supports it.

N/A

Example Helm Chart

# Default values for snaplogic-snaplex. # This is a YAML-formatted file. # Declare variables to be passed into your templates. # Regular nodes count jccCount: 1 # Feedmaster nodes count feedmasterCount: 1 # Docker image of SnapLogic snaplex image: repository: snaplogic/snaplex tag: latest # SnapLogic configuration link snaplogic_config_link: # SnapLogic Org admin credential #snaplogic_secret: # Enhanced encryption secret #enhanced_encrypt_secret: # CPU and memory limits/requests for the nodes limits: memory: 8Gi cpu: 2000m requests: memory: 8Gi cpu: 2000m # Default file ulimit and process ulimit sl_file_ulimit: 8192 sl_process_ulimit: 4096 # Enable/disable startup, liveness and readiness probes probes: enabled: true # JCC HPA autoscaling: enabled: false minReplicas: maxReplicas: # Average count of Snaplex queued pipelines (e.g. targetPlexQueueSize: 5), leave empty to disable # To enable this metric, Prometheus and Prometheus-Adapter are required to install. targetPlexQueueSize: # Average CPU utilization (e.g. targetAvgCPUUtilization: 50 means 50%), leave empty to disable. # To enable this metric, Kubernetes Metrics Server is required to install. targetAvgCPUUtilization: # Average memory utilization (e.g. targetAvgMemoryUtilization: 50 means 50%), leave empty to disable. # To enable this metric, Kubernetes Metrics Server is required to install. targetAvgMemoryUtilization: # window to consider waiting while scaling up. default is 0s if empty. scaleUpStabilizationWindowSeconds: # window to consider waiting while scaling down. default is 300s if empty. scaleDownStabilizationWindowSeconds: # grace period seconds after JCC termination signal before force shutdown, default is 30s if empty. terminationGracePeriodSeconds: 900 # Enable IPv6 service for DNS routing to pods enableIPv6: false

Steps

  1. Configure the following parameters in the Helm Chart and name the file values.yaml.

  2. In the Helm Chart console, run the following command: 

    $ helm install snaplogic <helm_chart_folder>
    Where <helm_chart_folder> is the Helm Chart zip file, which you can download from this document.

  3. Run the helm list command to determine the status of the deployment.
    The following sample output shows a successful deployment:

    If you deploy the Snaplex JCC nodes but resources in the Kubernetes environment are not available to fulfill the Helm Chart, then your deployment goes into a pending state until sufficient resources are available. The following sample output shows the pending status of resources:

     

After you deploy your Helm Chart, you can deploy a load balancer.

Configuring IPv6

To set up IPv6 on Kubernetes:

  1. In the values.yaml file of the Helm Chart, set the value enableIPv6: true.

  2. Set the global property for the jcc.k8s_subdomain_service in this format -- <Helm Release Name>-snaplogic-snaplex-ipv6.

Deploy a load balancer

To add load balancers to your JCC and FeedMaster nodes:

  1. In the Helm console, run the helm list command to list the services. 

  2. In SnapLogic Manager, navigate to the target Project folder, then click the target Snaplex; the Update Snaplex dialog appears. 

  3. On the Settings tab of the Update Snaplex dialog, enter the corresponding values in the following fields:

    • Load balancer. Enter the protocol and port number of the Snaplex JCC node. Refer to PORT(s) associated with snaplogic-snaplex-regular.

    • Ultra load balancer. Enter the protocol and port number of the FeedMaster node. Refer to PORT(s) associated with snaplogic-snaplex-feed.

  4. Review the information, then click Update.

After your Snaplex and FeedMaster nodes are deployed, you can start designing and running Pipelines and Tasks.

Installing utilities

For Kubernetes-based deployments, users have to build images/containers that install the utilities in appropriate locations. Those images can use the official Snaplogic image as the base image. When deploying the Snaplex to Kubernetes, the users would then use that image/container for deployment and have necessary dependencies and utilities in place.

Disk sizing guidelines

By default, Kubernetes pods use the disk space of the node they run on, called ephemeral disk. If ephemeral disk runs low, the Kubernetes pod taking the most disk space on the node will be evicted (e.g. restarted), and that disk space will be freed up. Kubernetes pods do not retain ephemeral disk space across restarts, so each time a pod restarts, its filesystem will be essentially cleared.

The amount of ephemeral disk space a Kubernetes worker node needs is dependent on the workloads running on that node, e.g., the number of ground plexes on K8s, the number of other pods, etc.

If more disk space is needed, a Persistent Volume can be used. In cloud environments like AWS, this is often EBS storage. Persistent volumes can be mounted to pods, and they retain data across restarts.

Best Practices

  • Avoid running processes in the same container as the JCC so that the JCC has the maximum amount of memory available, as requested.

  • Do not overwrite the global properties options unless you are working with your CSM to customize your Groundplex.

  • Request resources upfront. The requests determine the minimum required resources, while limits set the maximum resources a Container can consume. Setting them to the same amount ensures stability and exact resource usage. To do this, set the pod’s request and limit to the same value, as shown in the image below:

FAQ

 

You can split the license volume across multiple Nodes and Pods if you do not exceed the allocated CPU and memory (for a 4-container configuration).

If a user is licensed for four 8*32 nodes, then they should deploy not more than four Kubernetes containers, each assigned no more than 8vCPU and 32GB RAM.

Downloads

Download and extract the following files, using the values.yaml file as the basis for your Helm Chart.

 

  File Modified

ZIP Archive helm_chart_v2.zip Updated Helm chart

Jul 11, 2024 by Leena Gopal

 



See Also