ELT Load

 

Overview

You can use this Snap to load files/data from Amazon S3 buckets or Azure Cloud Storage containers to a Snowflake, Azure Synapse database, or a Databricks Lakehouse Platform (DLP) instance. You can also use this Snap to load or transfer data from:

  • Amazon S3 buckets to the Amazon Redshift database.

  • Amazon Redshift or Google Cloud Storage to BigQuery tables. 

  • A DBFS folder to a DLP table.

Refer to ELT Source-Target-Hosting Support Matrix for complete information. 

If you want to use the COPY INTO command in ELT Execute Snap for loading data into the target database, you need to pass (expose) these account credentials inside the SQL statement. You can use the ELT Load Snap to prevent this security issue.

Snap Type

The ELT Load Snap is a Write-type Snap that writes/loads data from a source file/table to a table in the destination/target CDW.

Prerequisites

  • Valid accounts and access permissions to connect to one source and one target in the following source and target locations (Refer to the ELT Source-Target-Hosting Support Matrix for the supported source-target combinations):

    • Source: Amazon S3, Azure Cloud Storage, DBFS location, or Google Cloud Storage

    • Target: Snowflake, Redshift, Azure Synapse, DLP, or BigQuery

Limitations

Known Issues

Snap Views

Type

Format

Number of Views

Examples of Upstream and Downstream Snaps

Description

Type

Format

Number of Views

Examples of Upstream and Downstream Snaps

Description

Input 

Document

  • Min: 0

  • Max: 1

  • ELT Transform

  • ELT Copy

  • ELT Select

A document containing the SQL query that you can use from the upstream ELT Snaps. 

Output

Document

  • Min: 0

  • Max: 1

  • ELT Transform

  • ELT Copy

A document containing the status of the load operation and an SQL query that you can use in any downstream ELT Snaps. 

Error

Error handling is a generic way to handle errors without losing data or failing the Snap execution. You can handle the errors that the Snap might encounter when running the by choosing one of the following options from the When errors occur list under the Views tab:

  • Stop Pipeline Execution: Stops the current pipeline execution if the Snap encounters an error.

  • Discard Error Data and Continue: Ignores the error, discards that record, and continues with the remaining records.

  • Route Error Data to Error View: Routes the error data to an error view without stopping the Snap execution.

Learn more about Error handling in pipelines.

Snap Settings

  • Asterisk ( * ): Indicates a mandatory field.

  • Suggestion icon (): Indicates a list that is dynamically populated based on the configuration.

  • Expression icon ( ): Indicates the value is an expression (if enabled) or a static value (if disabled). Learn more about Using Expressions in SnapLogic.

  • Add icon ( ): Indicates that you can add fields in the field set.

  • Remove icon ( ): Indicates that you can remove fields from the field set.

  • Upload icon ( ): Indicates that you can upload files.

SQL Functions and Expressions for ELT

You can use the SQL Expressions and Functions supported for ELT to define your Snap or Account settings with the Expression symbol ( ) enabled, where available. This list is common to all supported target CDWs. You can also use other expressions/functions that your target CDW supports.

Field Name

Field Type

Field Dependency

Description

Field Name

Field Type

Field Dependency

Description

Label*

 

Default ValueELT Load

ExampleS3 Load

String

None.

Specify a name for the Snap. You can modify this to be more specific, especially if you have more than one of the same Snap in your pipeline.

 

Get preview data

 

Default ValueNot selected

ExampleSelected

Checkbox

None.

Select this checkbox to include a preview of the query's output. The Snap performs limited execution and generates a data preview during pipeline validation.

The number of records displayed in the preview (on validation) is the smaller of the following:

  • Number of records available on execution of the SQL query generated by the Snap.

  • The value set in the Preview Data Count setting (default is 50 records).

Database Name

 

Default Value: N/A

ExampleTEST_DB

String

None.

Enter the name of the database in which the target table exists. Leave this blank if you want to use the database name specified in the Default Database Name field in the Account settings.

Schema Name (Not applicable to Databricks Lakehouse Platform)*

 

Default Value: N/A

ExampleSALES

String

Not applicable to DLP.

Enter the name of the database schema. In case the schema name is not defined, then the suggestions retrieved for the schema name contain all schema names in the specified database.

Target Table Name*

 

Default Value: N/A

ExampleSALES_ORDERS

String

None.

Enter the name of the table or view in which you want to perform the load operation. 

Target Table Hash Distribution Column (Azure Synapse Only)

 

Default Value: N/A

ExampleVar_table

String/Expression

Applicable to Azure Synapse only.

Specify the hash distribution column name for the target table in Azure Synapse, if you choose the Load Action as Drop and Create table.

Load Action

 

Default ValueAppend rows to existing table

ExampleAlter table

Dropdown list

None.

Select the load action to perform on the target table.

Available options are:

  • Append rows to existing table. Loads the data from the source files into the specified target table.

  • Overwrite existing table. Overwrites the target table with the data from the source files.

  • Drop and Create table. Drops the target table if it exists, creates a new table with the columns provided in the Table Columns field set, and then loads the data from the source files into the target table. Activates the Data Type field in the Table Columns field set.

  • Alter table. Modifies the schema of the target table based on the configuration of the Modifier field in the Table Columns field set and loads the data from the source files into the target table. Activates the Data Type and Modifier fields in the Table Columns field set. 

Table Columns

This field set enables you to configure the schema of the target table. You can use this field set to add/drop columns in the target table if you select the Drop and Create table or Alter table options in the Load Action field. 

This field set consists of the following fields:

  • Column

  • Data Type

  • Modifier

Column

 

Default Value: N/A

ExampleID, FNAME

String

Load Action is Drop and Create table or Alter table.

Enter the name of the column that you want to load in the target table. You can also specify the columns to drop if you select the Alter table option in the Load Action field. 

Data Type

 

Default Value: N/A

ExampleINT, VARCHAR

String

Load Action is Drop and Create table or Alter table.

Enter the data type of the values in the specified column. 

Modifier

 

Default ValueAdd

ExampleDrop

String

Load Action is Alter table.

Select whether you want to add/drop the specified column.

Available options are:

  • Add

  • Drop

Table Option List

This field set enables you to define the table options for creating the target table before performing the load operation. These options vary based on your target CDW. Refer to the Table options for Load action for the complete list of permitted table options. You must specify each table option in a separate row.

  • Table Option

Table Option

 

Default Value: N/A

Example: OPTIONS(custID=03761)

Expression/Suggestion

 

Choose a table option that you want to use from the suggested options. Specify the required values for the selected option.

Redshift Schema Name (Only when BigQuery with Source Location as Redshift)

 

Default Value: N/A

ExamplePUBLIC, DEF_SCHEMA

String/Expression

Database Type is BigQuery and Source Location is Amazon Redshift in the Snap Account.

Specify the schema name of the source table in Redshift.

Redshift Table Name (Only when BigQuery with Source Location as Redshift)

 

Default Value: N/A

ExampleDataLoad_Source01

String/Expression

Database Type is BigQuery and Source Location is Amazon Redshift in the Snap Account.

Specify the name of the Redshift source table (from the schema selected above).

Cloud Storage Path

 

Default Value: N/A

Examples3://bigbucket/app_data

String/Expression

 

Specify the fully qualified path to the folder in the Cloud storage in this field, if you want to override the default path defined in the Snap's Account settings. For example:

  • AWS S3 path: s3://<bucket name>/<folder>

  • DBFS folder: /<dbfs folder name>

  • Azure: azure://<accountname>.blob.core.windows.net/<containername>/<azurefolder>

  • Google Cloud Storage: gcs://<bucketname>/<folder>/

File List

This field set enables you to specify the staged files to load. You must specify each file in a separate row. Click + to add a new row.

This field set consists of the following field:

  • File 

File

 

Default Value: N/A

ExampleTestData.csv

String

None.

Enter the name of the staged file to load.

File Name Pattern

 

Default Value: N/A

Example

  • Snowflake: '.*key.*[.]csv'

  • Redshift: './key.*csv'

String

None.

Enter the pattern to use to match the file name and/or absolute path. You can specify this as a regular expression pattern string, enclosed into use the key-based search mechanism. 

Refer to Loading Using Pattern Matching for details on Snowflake regular expressions, Examples of COPY INTO (Delta Lake on Databricks) for DLP, or Regular Expressions and the Java Programming Language for using regular expressions with Redshift, Azure Synapse, or BigQuery in this field.

File Format Type

 

Default ValueNone

ExampleAVRO

String/Expression/Suggestion

None.

Select the format for the file. The options vary based on the database type in your account settings.

The supported file formats are: 

  • Snowflake: None, AVRO, CSV, JSON, ORC, PARQUET, XML

  • Redshift: None, AVRO, CSV, JSON, ORC, PARQUET

  • Azure Synapse: CSV, ORC, PARQUET

  • DLP: AVRO, CSV, JSON, ORC, PARQUET

  • BigQuery: AVRO, CSV, JSON, ORC, PARQUET

File Format Option List

This field set enables you to define the file format options for the load operation. You must specify each file format option in a separate row.

  • Format Option

Refer to Snowflake Data Loading Commands, Redshift Data Format ParametersCOPY INTO (Transact-SQL) for Azure Synapse Analytics, COPY INTO Format options for DLP, or the BigQuery’s Batch load data guide specific to your source file format type for the list of options that you can use based on the target database.

Format Option

 

Default Value: N/A

ExampleSKIP_HEADER = 1

String/Expression/Suggestion

Based on the combination of Database Type and File Format Type.

Choose a file format option that you want to use during the load operation from the suggested values. Specify the required value for the selected option.

Encryption Type

 

Default ValueNone

ExampleServer-Side Encryption

String/Expression/Suggestion

None.

Select the encryption type that you want to use for the loaded data and/or files.

Available options are:

  • None

  • Server-Side Encryption (Not supported by Azure Synapse)

  • Server-Side KMS Encryption (Not supported by Azure Synapse)

KMS Key

 

Default Value: N/A

Example: WC2YY-2BFMV-KHKB3-FDDGQ-8NRQY

String/Expression

Encryption Type is Server-Side KMS Encryption.

Enter the KMS key to use to encrypt the files. 

Copy Option List

This field set enables you to define the COPY options for the load operation. You must specify each COPY option in a separate row. Click + to add a new row.

This field set comprises the following field:

  • Copy Option

See COPY Options for Snowflake, COPY Parameter Reference for Redshift, COPY INTO (Transact-SQL) for Azure Synapse Analytics, or COPY_OPTIONS under COPY INTO Parameters for DLP.

Copy Option

 

Default Value: N/A

Example: ON_ERROR = ABORT_STATEMENT

String/Expression/Suggestion

None.

Choose a COPY option from the suggested values to use if an error occurs during the load operation. Specify the required value for the selected option.

Validation Mode

 

Default ValueNone

Example: RETURN_n_ROWS

String/Expression/Suggestion

None.

Select an output preview type for the data validation performed as part of the pipeline validation. The options vary based on the database type (Snowflake/Redshift) in your account settings.

Available options for Snowflake are:

  • None

  • RETURN_n_ROWS

  • RETURN_ERRORS

  • RETURN_ALL_ERRORS

Available options for Redshift are:

  • None

  • NOLOAD

For more details, refer to Validating Staged Files for Snowflake and Validating Input Data for Redshift.

Rows To Return

 

Default Value: N/A

Example: 20

String (Number)

Validation Mode is RETURN_n_ROWS.

Enter the number of records to retrieve from the target table to validate whether the load operation was successful.

Enable source column position (Snowflake and Azure Synapse Only)

 

Default Value: Not selected

Example: Selected

Checkbox

Database Type is Snowflake or Azure Synapse.

Select this checkbox to specify the source table column’s position in the Target to Source Column Map instead of its name.

Target to Source Column Map

This field set enables you to define the mapping between the columns in the target table and the corresponding columns in the source file. You must define each mapping in a separate row.

The available options are:

  • Target Table Column Name

  • Source File Column Name

Target Table Column Name

Default Value: N/A
ExampleORDER_ID

String/Expression/Suggestion

None.

Choose a column from the list of target table columns displayed. Ensure that you have defined the Schema Name or the Target Table Name to view the list of columns in this field's suggestions.

Source File Column Name

Default Value: N/A
ExampleORD_ID

String/Expression/Suggestion

None.

Choose a column from the list of source file columns displayed. Ensure that you have defined the Schema Name (or source file path) to view the list of columns in this field's suggestions.

Source Column Position (Valid Only For Snowflake and Azure Synapse)

Default Value: N/A
Example: (An integer) 1, 3, 4

Integer/Expression

Database Type is Snowflake or Azure Synapse.

Specify the column’s position in the source file.

Table options for Load action

Using file format options with ELT Load

Here are a few common file format options that can be used for the corresponding CDW when loading data from CSV files in a storage location to a table in that CDW.

Target CDW

Exclude header row from the input data stream

Specify row delimiters

Target CDW

Exclude header row from the input data stream

Specify row delimiters

Azure Synapse 

FIRSTROW = 2

ROWTERMINATOR = '0X0A' (CSV file created in MacOS)

ROWTERMINATOR = '\n' (CSV file created in Windows)

DLP

'header' = 'true'

lineSep=None (\r) | \r\n | \n

Google BigQuery

skip_leading_rows = 1

N/A

(allow_quoted_newlines = true if there are quoted data sections in a CSV file, that contain newline characters.)

Redshift

IGNOREHEADER 1

N/A

Snowflake

SKIP_HEADER = 1

RECORD_DELIMITER = '<character>' | NONE

Load data from AVRO/ORC/JSON/Parquet files

Data in your AVRO/ORC/JSON/Parquet files can exist as any combination of the following structures: Flat data, nested lists, and nested maps.

  • Flat file fields contain data in a simple two-dimensional spreadsheet-like format (Level 0). Such fields can be read and loaded using the standard mapping and loading methods.

  • File fields in nested lists or maps contain structured and hierarchical data where values for each field can be:

    • A series of repeated fields (Level 1) or

    • A series of values (Level 1)

    • Another set of key-value pairs (Level 2), or

    • A set of keys with each or some of them containing a nested set of key-value pairs (Level 3), and so on.

Different Parquet file structures

The table below depicts the possible schema variations within a Parquet file with examples of source table data. It also indicates how to reference the fields (keys in the source files) and map them with the corresponding target table columns to load your data.

Source Files (AVRO/ORC/JSON/Parquet)

Canonical format

Non-canonical format

Flat data

Nested List

Nested Map

Nested Map

Sample schema (column definitions)

Field(name: "name", datatype: String) Field(name: "age", datatype: Int32) Field(name: "city", datatype: String)
Field(name: "tourist", datatype: Struct[ Field(name: "name", datatype: String), Field(name: "visits", da